| 
       
	
	 Previous Article 
	Next Article 
	Contents of this Issue 
	Other Issues 
       
        ELibM Journals 
	ELibM Home 
	EMIS Home 
       
     | 
    
          
     | 
    
Stabilité des solutions périodiques ou anti-périodiques de certains systèmes différentiels
Daad Abou Saleh
Laboratoire Jacques-Louis Lions, Université Pierre et Marie Curie,  Boite courrier 187, 75252 Paris Cedex 05 -- FRANCE  E-mail: daad.abousaleh@ccf.com
 
Abstract: We consider the non linear differential system in $\R^2$  $$ \left\{\begin{array}{l}  u'(t)+ku(t)\Bigl(u(t)^2+v(t)^2\Bigr)-\lambda u(t)=h_1(t),  v'(t)+kv(t)\Bigl(u(t)^2+v(t)^2\Bigr)-\lambda v(t)=h_2(t).  \end{array}\right.$$  In order to study the stability of anti-periodic solutions of this system, a result of Liapounov in the stability theory of autonomous nonlinear ODE is enlarged to diffenrentials systems of the form $u'=F(t,u)$ in the Hilbert space framework with finite dimension. On the other hand, a result of R. Bellman in the instability theory of autonomous nonlinear ODE is enlarged to diffenrentials systems where $L$, the linearized operator for $F$, is a nonautonomous periodic operator.
 Keywords: periodic solutions; stability.
 Classification (MSC2000): 34A34, 34D20, 34D23. Full text of the article: 
 
Electronic version published on: 7 Mar 2008.
 
© 2005 Sociedade Portuguesa de Matemática
 
© 2005–2008 ELibM and FIZ Karlsruhe / Zentralblatt MATH for
the EMIS Electronic Edition
 
 |