International Journal of Mathematics and Mathematical Sciences
Volume 23 (2000), Issue 4, Pages 285-288
doi:10.1155/S016117120000082X
Abstract
We prove that if f is a transcendental meromorphic function of finite order and ∑a≠∞δ(a,f)+δ(∞,f)=2, then K(f(k))=2k(1−δ(∞,f))1+k−kδ(∞,f), where K(f(k))=limr→∞N(r,1/f(k))+N(r,f(k))T(r,f(k)) This result improves a result by Singh and Kulkarni.