A NOTE ON A RESULT OF SINGH AND KULKARNI

MINGLIANG FANG

(Received 22 June 1998)

ABSTRACT. We prove that if f is a transcendental meromorphic function of finite order and $\sum_{a \neq \infty} \delta(a, f) + \delta(\infty, f) = 2$, then

$$K(f^{(k)}) = \frac{2k(1-\delta(\infty,f))}{1+k-k\delta(\infty,f)},$$

where

$$K(f^{(k)}) = \lim_{r \to \infty} \frac{N(r, 1/f^{(k)}) + N(r, f^{(k)})}{T(r, f^{(k)})}.$$

This result improves a result by Singh and Kulkarni.

Keywords and phrases. Meromorphic functions, Nevanlinna's deficiency, maximum deficiency sum.

2000 Mathematics Subject Classification. Primary 30D35.

1. Introduction and the main result. Let f(z) be a meromorphic function in the complex plane. We use the following notations of value distribution theory (see [2])

$$T(r,f), m(r,f), N(r,f), \overline{N}(r,f), \dots$$
(1.1)

and denote by S(r, f) a function with the property that $S(r, f) = o(T(r, f)), r \to \infty$ (outside an exceptional set of finite linear measure, if *f* is of infinite order). The Nevanlinna's deficiency of *f* with respect to a finite complex number *a* is defined by

$$\delta(a,f) = \lim_{r \to \infty} \frac{m(r,1/(f-a))}{T(r,f)}.$$
(1.2)

If $a = \infty$, then one should replace m(r, 1/(f - a)) in the above formula by m(r, f). The well known Nevanlinna's deficiency relation states that

$$\sum_{a \neq \infty} \delta(a, f) + \delta(\infty, f) \le 2.$$
(1.3)

If the above inequality holds, then we say that f has maximum deficiency sum.

In [3], Singh and Kulkarni proved the following result.

THEOREM 1.1. Suppose that f is a transcendental meromorphic function of finite order and $\sum_{a\neq\infty} \delta(a, f) + \delta(\infty, f) = 2$, then

$$\frac{1-\delta(\infty,f)}{2-\delta(\infty,f)} \le K(f') \le \frac{2(1-\delta(\infty,f))}{2-\delta(\infty,f)},\tag{1.4}$$

where

$$K(f') = \overline{\lim_{r \to \infty}} \frac{N(r, (1/f')) + N(r, f')}{T(r, f')}.$$
(1.5)

In this note, we prove the following.

THEOREM 1.2. Suppose that f is a transcendental meromorphic function of finite order and $\sum_{a\neq\infty} \delta(a, f) + \delta(\infty, f) = 2$, then

$$K(f^{(k)}) = \frac{2k(1 - \delta(\infty, f))}{1 + k - k\delta(\infty, f)},$$
(1.6)

where

$$K(f^{(k)}) = \lim_{r \to \infty} \frac{N(r, 1/f^{(k)}) + N(r, f^{(k)})}{T(r, f^{(k)})}.$$
(1.7)

2. An important lemma

LEMMA 2.1 [1]. Let f(z) be a transcendental meromorphic function, then for each positive number ϵ and each positive integer k, we have

$$k\overline{N}(r,f) \le N(r,1/f^{(k)}) + N(r,f) + \epsilon T(r,f) + S(r,f).$$

$$(2.1)$$

PROOF OF THEOREM 1.2. First, we prove that

$$\lim_{r \to \infty} \frac{T(r, f^{(k)})}{T(r, f)} = 1 + k - k\delta(\infty, f), \quad r \to \infty.$$
(2.2)

Without loss of generality, we assume that f has infinitely many finite deficient values a_1, a_2, \ldots . It follows from Littlewood's inequality

$$\sum_{n=1}^{p} m\left(r, \frac{1}{f-a_n}\right) \le m\left(r, \frac{1}{f'}\right) + S(r, f)$$

$$\le T(r, f) + \overline{N}(r, f) + S(r, f),$$
(2.3)

that

$$\sum_{n=1}^{P} \delta(a_n, f) \le 1 + \lim_{r \to \infty} \frac{\overline{N}(r, f)}{T(r, f)} \le 1 + \lim_{r \to \infty} \frac{N(r, f)}{T(r, f)} = 2 - \delta(\infty, f).$$
(2.4)

By the assumption, we have

$$\sum_{n=1}^{\infty} \delta(a_n, f) = 2 - \delta(\infty, f).$$
(2.5)

Let $p \rightarrow \infty$ in (2.4) and use (2.5) to obtain

$$\lim_{r \to \infty} \frac{\overline{N}(r, f)}{T(r, f)} = \lim_{r \to \infty} \frac{N(r, f)}{T(r, f)} = 1 - \delta(\infty, f).$$
(2.6)

286

Replacing f' in (2.3) by $f^{(k)}$, we get

$$\sum_{n=1}^{p} m\left(r, \frac{1}{f-a_n}\right) \le m\left(r, \frac{1}{f^{(k)}}\right) + S(r, f) \le T(r, f^{(k)}) - N\left(r, \frac{1}{f^{(k)}}\right) + S(r, f).$$
(2.7)

It follows from (2.7) and (2.1) that

$$\sum_{n=1}^{p} m\left(r, \frac{1}{f-a_n}\right) \le T(r, f^{(k)}) + N(r, f) - k\overline{N}(r, f) + \epsilon T(r, f) + S(r, f).$$
(2.8)

Consequently, because of (2.6), we have

$$\lim_{r \to \infty} \frac{T(r, f^{(k)})}{T(r, f)} \ge (k-1)\left(1 - \delta(\infty, f)\right) + \sum_{n=1}^{p} \delta(a_n, f) - \epsilon.$$
(2.9)

Now, let $p \to \infty$ and $\epsilon \to 0$ and use (2.5) to obtain

$$\lim_{r \to \infty} \frac{T(r, f^{(k)})}{T(r, f)} \ge 1 + k - k\delta(\infty, f).$$
(2.10)

On the other side,

$$T(r, f^{(k)}) \le T(r, f) + k\overline{N}(r, f) + S(r, f).$$
(2.11)

Therefore, because of (2.6),

$$\overline{\lim_{r \to \infty}} \frac{T(r, f^{(k)})}{T(r, f)} \le 1 + k - k\delta(\infty, f).$$
(2.12)

Equation (2.2) follows from the above estimates.

Next, we prove that

$$\lim_{r \to \infty} \frac{N(r, 1/f^{(k)})}{T(r, f^{(k)})} = \frac{(k-1)(1-\delta(\infty, f))}{1+k-k\delta(\infty, f)}.$$
(2.13)

From the first inequality of (2.7), we have

$$\underbrace{\lim_{r \to \infty} \frac{m(r, 1/f^{(k)})}{T(r, f)}}_{r \to \infty} \ge \sum_{n=1}^{p} \delta(a_n, f).$$
(2.14)

Consequently, if we let $p \rightarrow +\infty$ and use (2.5), we get

$$\underline{\lim_{r \to \infty} \frac{m(r, 1/f^{(k)})}{T(r, f)} \ge 2 - \delta(\infty, f).$$
(2.15)

On the other side, from (2.1) and (2.7), we have

$$\begin{split} m\left(r,\frac{1}{f^{(k)}}\right) &\leq T\left(r,f^{(k)}\right) - N\left(r,\frac{1}{f^{(k)}}\right) + S(r,f) \\ &\leq T(r,f) + k\overline{N}(r,f) - N\left(r,\frac{1}{f^{(k)}}\right) + S(r,f) \\ &\leq T(r,f) + N(r,f) + \epsilon T(r,f) + S(r,f), \end{split}$$

$$(2.16)$$

287

hence,

$$\overline{\lim_{r \to \infty}} \frac{m(r, 1/f^{(k)})}{T(r, f)} \le 2 - \delta(\infty, f) + \epsilon,$$
(2.17)

if we let $\epsilon \to 0$, we get

$$\overline{\lim_{r \to \infty}} \, \frac{m(r, 1/f^{(k)})}{T(r, f)} \le 2 - \delta(\infty, f).$$
(2.18)

Thus, from (2.15) and (2.18), we obtain

$$\lim_{r \to \infty} \frac{m(r, 1/f^{(k)})}{T(r, f)} = 2 - \delta(\infty, f).$$
(2.19)

Hence, from (2.2), (2.18), and (2.19), we have

$$\lim_{r \to \infty} \frac{N(r, 1/f^{(k)})}{T(r, f^{(k)})} = 1 - \lim_{r \to \infty} \frac{m(r, 1/f^{(k)})}{T(r, f^{(k)})} \\
= 1 - \lim_{r \to \infty} \frac{m(r, (1/f^{(k)}))}{T(r, f)} \lim_{r \to \infty} \frac{T(r, f)}{T(r, f^{(k)})} \\
= 1 - \frac{2 - \delta(\infty, f)}{1 + k - k\delta(\infty, f)} = \frac{(k - 1)(1 - \delta(\infty, f))}{1 + k - k\delta(\infty, f)}.$$
(2.20)

Finally, from (2.2) and (2.6), we have

$$\lim_{r \to \infty} \frac{N(r, f^{(k)})}{T(r, f^{(k)})} = \lim_{r \to \infty} \frac{N(r, f) + k\overline{N}(r, f)}{T(r, f^{(k)})}$$

$$= \lim_{r \to \infty} \frac{N(r, f) + k\overline{N}(r, f)}{T(r, f)} \lim_{r \to \infty} \frac{T(r, f)}{T(r, f^{(k)})}$$

$$= \frac{(k+1)(1 - \delta(\infty, f))}{1 + k - k\delta(\infty, f)}.$$
(2.21)

Therefore, we deduce, from (2.20) and (2.21), that

$$\lim_{r \to \infty} \frac{N(r, 1/f^{(k)}) + N(r, f^{(k)})}{T(r, f^{(k)})} = \frac{2k(1 - \delta(\infty, f))}{1 + k - k\delta(\infty, f)}.$$
(2.22)

Thus, the proof of Theorem 1.2 is complete.

ACKNOWLEDGEMENT. The author is very grateful to Prof. Wei Hong for his help. This work is supported in part by National Natural Science Foundation of China.

REFERENCES

- G. Frank and G. Weissenborn, *Rational deficient functions of meromorphic functions*, Bull. London Math. Soc. 18 (1986), no. 1, 29–33. MR 87i:30055. Zbl 586.30025.
- W. K. Hayman, *Meromorphic Functions*, Clarendon Press, Oxford, 1964. MR 29#1337. Zbl 115.06203.
- [3] S. K. Singh and V. N. Kulkarni, *Characteristic function of a meromorphic function and its derivative*, Ann. Polon. Math. 28 (1973), 123-133. MR 48#4315. Zbl 273.30025.

FANG: STATE KEY LABORATORY OF MILLIMETER WAVES, SOUTHEAST UNIVERSITY, NANJING 210096, CHINA

288