International Journal of Mathematics and Mathematical Sciences
Volume 2009 (2009), Article ID 210304, 16 pages
doi:10.1155/2009/210304
  
     
          
          Integrable equations and their evolutions based on intrinsic geometry of Riemann spaces
          
            Paul Bracken
          
          Department of Mathematics, University of Texas, Edinburg, TX 78541-2999, USA
          
          Abstract
The intrinsic geometry of surfaces and Riemannian spaces will be investigated. It is shown that many nonlinear partial differential equations with physical applications and soliton solutions can be determined from the components of the relevant metric for the space. The manifolds of interest are surfaces and higher-dimensional Riemannian spaces. Methods for specifying integrable evolutions of surfaces by means of these equations will also be presented.