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1. Introduction

Surfaces arise in the study of many classical systems, especially those in which interfaces
or fronts appear. This occurs in the study of surface waves, deformations of membranes,
and boundaries between regions of differing viscosity or densities. Surfaces are also finding
applications at present in the areas of classical string theory and quantum field theory
[1, 2]. Two cases which are particularly important for applications and have received much
attention are the cases in which the surface can be ascribed a constant mean curvature or
a constant Gaussian curvature. Each of these cases has a wide variety of nonlinear partial
differential equations associated with it, and each has been studied with great interest
recently [3, 4].

This is due to the fact that many partial differential equations, or systems of differential
equations, can be generated as a consequence of formulas which result from the study of
surfaces. Some equations such as those related to constant mean curvature are a consequence
of the theory, and many related to constant Gaussian curvature can be obtained as a result of
specifying quantities which are in the formulas in a particular form. Moreover, many of these
equations are known to possess soliton solutions [5], and so this provides a link between
equations, solitons, and surfaces. This has certainly been shown to be the case in the study of
constant mean curvature surfaces [6]. In fact, many nonlinear equations which have been
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studied recently, such as the KdV and mKdV equations, are directly related to surfaces
which have constant Gaussian curvature [7, 8]. These equations have soliton solutions, and
conversely solutions from these equations can be used to determine the first and second
fundamental forms of a surface. Historically, Bianchi and Bäcklund introduced symmetry
transformations which can be regarded as transformations between surfaces and have come
to be called Bäcklund transformations. This was initially done for the sine-Gordon equation
which allows the construction of new pseudospherical surfaces from a given surface. In an
approach that uses the inverse scattering transform method, one starts with the system of
1 + 1-dimensional linear problems ψx = Pψ, ψy = Qψ and then constructs explicit formulas
for the immersion of one-parameter families of surfaces [9].

The study of the general theory of three-dimensional Riemann spaces has not been
completed as far as a theory of surfaces is concerned [10]. In fact, various partial differential
equations do arise within the study of problems in three and higher dimensional Riemann
spaces as will be seen here. Three-dimensional Riemann spaces and possibly even higher
dimensional versions play a crucial and fundamental role in general relativity and the study
of gravity in general. One of the reasons for this is that any metric in general relativity can
be transformed into a synchronic system of coordinates, which is one in which the spatial
part of the metric is Riemannian. In this event, an initial value problem can be formulated in
terms of three-dimensional Riemannian space plus one time variable in a very natural way.
The study of higher-dimensional Riemann spaces can very well be of importance in the study
of Kaluza-Klein theories as well as in formulating string theories.

The intrinsic geometry of surfaces and Riemannian spaces will be introduced and
described without any reference to the enveloping space. Results from the study of these
spaces are used to obtain nonlinear differential equations. This gives an automatic connection
between surfaces and equations. The procedure will be to define a metric in mathematical
form with a particular structure and a curvature which will depend on the components of
the metric and given by a specific formula, in particular the curvature equation. This will
be used to establish a relationship between the intrinsic geometry of the spaces as specified
by the functions in the metric and multidimensional integrable equations which result from
the curvature equation [11]. Methods for specifying integrable evolutions or deformations of
surfaces will also be examined as well. The study of the solutions to these equations is not the
main objective here, but to formulate some new, relevant equations and propose some new
ones for study.

2. Nonlinear Equations Related to Surfaces

Consider two-dimensional surfaces which have a first fundamental form given in terms of
components as

ds2I = E dx2 + 2F dx dy +G dy2, (2.1)

where E, F, andG are functions of the local coordinates (x, y) of a surface. The basic invariant
which is characteristic of the intrinsic geometry of a surface is the Gaussian curvature, which
is determined by

K =
R1212

g
=
R1212

H2
. (2.2)
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In (2.2), R1212 is the nonzero component of the Riemann tensor Rαβγδ, andH is related to g by
means of the expression [12]

g = EG − F2 = H2. (2.3)

Given the components of the first fundamental form or metric, the Christoffel symbols Γkij are
evaluated by means of

Γkij =
1
2
gks

(
∂gis

∂xj
+
∂gjs

∂xi
− ∂gij

∂xs

)
. (2.4)

The component R1212 can be calculated by means of

R1212 =
∂Γ122
∂x

− ∂Γ121
∂y

+ Γh11Γ2h2 − Γh12Γ2h1. (2.5)

In terms of the components of the metric of a surface given by (2.1), the Gaussian curvature
K(x, y) can be evaluated by first calculating (2.5) and then putting this result into (2.2). This
procedure shows that the Gaussian curvature K(x, y) is related to the components of the
metric of the surface by means of the Gauss equation

K =
1
2H

((
F

EH
Ey − 1

H
Gx

)
x

+
(

2
H
Fx − 1

H
Ey − F

EH
Ex

)
y

)
. (2.6)

By specifying the components of the metric (2.1) in a particular way, it is possible to use (2.6)
to generate various types of nonlinear equations. Several examples will serve to illustrate the
main idea as to exactly how this can be done.

First put E = G = 0 andH = F in (2.6), then we obtain

(lnF)xy − FK = 0. (2.7)

Setting F = exp(ϕ), this equation becomes

ϕxy −K exp
(
ϕ
)
= 0. (2.8)

The coordinate curves are minimal lines, and for the case of constant Gaussian curvature K,
it specifies a particular nonlinear equation, the Liouville equation.

As another example, suppose that we take F = 0, E = cos2θ, and G = sin2θ, then
H = cos θ sin θ, Gx = 2 sin θ cos θθx, and Ey = −2 cos θ sin θθy, and one has the lines of
curvature as the coordinate curves. The Gauss equation (2.6) takes the form

θxx − θyy = −HK. (2.9)
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Taking a constant negative curvature K = −2a2 in (2.9), it is found that θ satisfies

θxx − θyy = a2 sin(2θ). (2.10)

Thus, for different metrics, or systems of coordinates, on a surface, the Gauss equation (2.6)
reduces to a simple partial differential equation, as in (2.8) or (2.10). These equations have
come up within the analysis of the pure geometry of surfaces. The well-known cases of
nonlinear partial differential equations, such as the Liouville and sine-Gordon equations,
correspond to the case of constant Gaussian curvature.

Finally, another equation which has many applications to physics can be developed in
this way. Consider a geodesic system of coordinates for which E = 1, F = 0, and (2.1) reduces
to the diagonal form ds2 = dx2 + G dy2. Thus the curves y equal constant are geodesics, and
for (2.3) in this metric, this implies that G = H2. The Gauss equation takes the form

Hxx +K
(
x, y

)
H = 0. (2.11)

This is a linear equation, and when K is fixed to be constant, the corresponding surfaces are
the spherical or pseudospherical surfaces of constant curvature. It is important to realize that
(2.11) is closely connectedwith the one-dimensional stationary Schrödinger equation [13, 14].
This can be seen by identifying

H
(
x, y

)
= Re ψ

(
x, y, λ

)
, K

(
x, y

)
= −U(

x, y
)
+ λ20, (2.12)

where Re denotes the real part, and λ0 is an arbitrary real or pure imaginary value of the
spectral parameter λ in the equation

−ψxx +U
(
x, y

)
ψ = λ2ψ. (2.13)

Therefore, solvable cases of the Schrödinger equation (2.13) provide the explicit expressions
for the Gauss curvature K(x, y) and the metric of surfaces referred to their geodesic
coordinates. Here in (2.13), the quantity y acts as a parameter. In fact, in general, one can
prescribe any dependence of K(x, y) andH(x, y) on the variable y.

A way in which the dependence on y can be fixed is to require that the function H
obeys the additional linear equation

Hy = A(K,Kx, ∂x)H, (2.14)

where A is some additional differential operator. Recalling (2.12), where ψ obeys (2.13), we
require that in addition to (2.13), the function ψ satisfies an equation of the form

ψy = A(U,Ux, . . . , ∂x)ψ, (2.15)

where A is the linear differential operator in ∂x. The compatibility of (2.13) and (2.15)
gives the preservation of (2.11) in the y variable. Moreover, the compatibility condition for
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(2.13) and (2.15) is equivalent to a nonlinear partial differential equation for U. As a simple
example, take A = c∂x, where c is a constant, then ψ satisfies the two equations

ψxx =
(
U − λ2

)
ψ, ψy = c∂xψ. (2.16)

Differentiating the second equation twice with respect to x yields

∂2x∂yψ = c(∂xU)ψ + cU∂xψ − cλ2∂xψ. (2.17)

Similarly, differentiating the first equation with respect to y gives

∂y∂
2
xψ =

(
∂yU

)
ψ + cU∂xψ − cλ2∂xψ. (2.18)

Equating these two derivatives and simplifying the result, a first-order equation for U is
obtained, namely, c∂xU−∂yU = 0. The general solution to this equation isU = U(x+ cy) and
henceK = K(x+ cy). In fact, a nonlinear equation arises with the choice ofA as a third-order
differential operator.

Theorem 2.1. Suppose (2.15) is given by

4ψxxx − 6Uψx − 3Uxψ + ψy = 0. (2.19)

Then the compatibility condition for (2.13) and (2.19) is equivalent to the following equation forU:

Uxxx − 6UUx +Uy = 0. (2.20)

Proof. Substituting (2.13) into (2.19), we have the pair

ψxx = (U − λ) ψ, ψy = −Uxψ + 2Uψx + 4λ2ψx. (2.21)

Calculating the compatibility condition ψxxy − ψyxx = 0 based on (2.21), in order to enforce
this, it is found that (2.20)must hold. Putting K(x, y) = −U(x, y) + λ20, (2.20) takes the form

Kxxx + 6KKx − 6λ20Kx +Ky = 0. (2.22)

Equations (2.20) and (2.22) are precisely the KdV equation, which is known to be integrable.
The basic idea of themethod is to generate a solvable nonlinear system from the compatibility
condition of linear partial differential equations with variable coefficients. Of course, the KdV
equation has exact solutions, and so surfaces may be generated with soliton curvature and
associated solitonic metric. Therefore, as an example, it can be checked thatU given below is
a solution to (2.20):

U
(
x, y

)
=

−2a2
cosh2(a(x − 4a2y

) − x0) , K
(
x, y

)
=

2a2

cosh2(a(x − 4a2y
) − x0) + λ20. (2.23)
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The coefficientH(x, y) in the metric obeys a nonlinear equation such as (2.22) forK. This can
be obtained by solving (2.13) forU and substituting (2.19) to give

ψxxx − 6λ2ψx − 3
ψxψxx
ψ

+ ψy = 0. (2.24)

3. Evolutions of Surfaces

Consider now integrable evolutions or deformations of surfaces which are referred to
geodesic coordinates [15]. Suppose that the coefficient G orH of the metric and the Gaussian
curvature depend on an additional parameter which can be thought of as a time variable;
so we write H = H(x, y, t), K = K(x, y, t). Evolutions of H and K in t can be sought which
preserve (2.11), or by virtue of (2.12), evolutions in twhich preserve (2.13). They are given by
the compatibility condition of (2.13) and a linear equation of the form (2.15) with y replaced
by t; so there exists the pair

−ψxx +U(x, t)ψ = λ2ψ, ψx = A(U,Ux, . . . , ∂x)ψ, (3.1)

where A is a linear differential operator. The evolutions which can be taken for A can come
from the KdV hierarchy [16, 17].

Dynamics for a surface can also be introduced by fixing the dependence of K and H
using one of the equations from the KdV hierarchy and then specifying the evolution in t by
another equation from the hierarchy. The common solution K(x, y, t) of the KdV equation
(2.22) and a higher KdV equation, for example, Kt + ∂2n+1x K + · · · = 0 generates the evolution
of surfaces.

Another way for fixing the dependence of K and H on y and determination of the
evolution in t consists in considering the compatibility of a system composed of (2.13) and
an equation of the form

ψt + f
(
∂2x +K

)
ψy +

M∑
n=1

Un

(
x, y, t

)
∂nxψ = 0, (3.2)

where f is an arbitrary polynomial, and Un are functions. The compatibility of (2.13) and
(3.2) is equivalent to a 2+1-dimensional integrable equation for K. The following theorem
gives a case in point.

Theorem 3.1. (i) Consider the following pair of evolution equations withU = −K:

ψxx = −K(
x, y, t

)
ψ, (3.3)

ψt = −2
(
∂2xψy +Kψy

)
− 2

[∫x

−∞
dsKy

(
s, y, t

)]
ψx −Kyψ, (3.4)
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where here and in what follows one defines

∂−1x κ
(
x, y

)
=
∫x

−∞
dsκ

(
s, y

)
. (3.5)

Then the compatibility condition of (3.3) and (3.4) is equivalent to the following equation for
K(x, y, t):

Kt +Kxyy + 4KKy + 2Kx∂
−1
x Ky = 0. (3.6)

(ii) Consider the following pair of evolution equations:

ψxx = −K(
x, y, t

)
ψ + λ2ψ, (3.7)

ψt = −2
(
∂2xψy +Kψy

)
− 2

(∫x

−∞
dsKy

(
s, y, t

))
ψx −Kyψ. (3.8)

The compatibility condition for these two equations implies that K satisfies

Kt +Kxxy + 4KKy + 2Kx∂
−1
x Ky − 2λ2Ky = 0. (3.9)

The proof of this Theorem runs along exactly the same lines as Theorem 2.1. All of the lengthy
calculations throughout have been done with Maple [18].

Equation (3.6), for example, has an infinite set of integrals of motion, which are

Cn =
∫ ∫

dx dy Pn
(
x, y

)
, (3.10)

where the densities Pn are given by the recursion

Pm+1 = Pm,x +
m−1∑
k=1

PkPm−k, P1 = −K(
x, y, t

)
, m = 1, 2, 3, . . . . (3.11)

The first such integrals of motion turn out to be

C1 =
∫ ∫

dx dy K
(
x, y, t

)
, C2 =

∫ ∫
dx dy K2(x, y, t), C3 =

∫ ∫
dx dy

(
K2
x − 2K3

)
.

(3.12)

Thus, there exists an infinite set of global characteristics of a surface that are invariant under
the evolution discussed in Theorem 3.1.

As a generalization of (3.3) and (3.7) in Theorem 3.1, we have the theorem which
follows.
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Theorem 3.2. Consider the following pair of evolution equations:

∂2xψ + σ∂yψ +K
(
x, y, t

)
ψ = 0,

∂tψ + 4∂3xψ + 6K∂xψ + 3Kxψ − 3σ
(
∂−1x Ky

)
ψ + α = 0,

(3.13)

where σ2 = ±1 and α is a constant. The compatibility condition for these two equations implies thatK
satisfies

Ktx +Kxxxx + 6(KKx)x + 3σ2Kyy = 0. (3.14)

This 2+1-dimensional equation is integrable.

Amore systematic method [19] for passing to higher dimensions involves considering
the compatibility condition for a pair of equations of the form

Lψ = λψ,

∑
k

fk(L)
∂ψ

∂zk
+Aψ = 0,

(3.15)

where fk are arbitrary polynomials in the operator L, and zk are the variables. A slightly
different reformulation of this system will be of particular interest here, namely,

Lψ = λψ,

(D +A)ψ =
∑
k

λk
∂ψ

∂zk
+Aψ = 0.

(3.16)

In particular, if there are three variables and we take Dψ = (λ∂y + ∂t)ψ, with Lψ = (∂2x +K)ψ,
then (3.16) takes the form

∂2xψ = −Kψ + λψ, ∂tψ = −λ∂yψ −Aψ. (3.17)

Differentiating the first of the equations in (3.17)with respect to t and the second with respect
to x twice, the compatibility condition for (3.17) takes the following form:

∂t(L −K)ψ + λ∂y(L −K)ψ + (L −K)Aψ = 0. (3.18)

Expanding this out, we have the explicit form

−Ktψ +K
(
λ∂yψ +Aψ

) − λ(λ∂yψ +Aψ
)
+ λ∂y

(−Kψ + λψ
)
+ ∂2x

(
Aψ

)
= 0. (3.19)
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Let us work out (3.19) explicitly for the case in which A is the operator

A = α∂3x + f∂x + g, (3.20)

where α is an arbitrary constant, and f and g depend on x.

Theorem 3.3. With operator A given by (3.20), (3.19) is given explicitly as follows:

(
Kt + αKxxx +

(−3αK + f + 3αλ
)
Kx + λKy − 2λfx − gxx + 2fxK

)
ψ

+
(
3αKxx − fxx − 2gx

)
ψx = 0.

(3.21)

The last term in ψx is absent from (3.21) provided that f and g satisfy the equation

fxx + 2gx − 3αKxx = 0. (3.22)

Therefore when (3.22) is satisfied, compatibility condition (3.19) holds if the equation for K
multiplying ψ in (3.21) vanishes, namely,

Kt + αKxxx +
(−3αK + f + 3αλ

)
Kx + λKy − 2λfx − gxx + 2fxK = 0. (3.23)

To prove Theorem 3.3, the compatibility condition for (3.17) is worked out, and the
higher derivatives of ψ in x are eliminated using the first equation of (3.17). This is a long
calculation.

A solution to (3.22) can be determined. Let us set

f = f̃ +
∫x

−∞
Ky

(
s, y, t

)
ds, g = c

(
Ky + αKx

)
, (3.24)

where constant cwill be determined in the process. Substituting (3.24) into (3.22), the solution
will work if c = −1/2 and f̃ is determined from

f̃xx = 4αKxx, (3.25)

which implies that we can take f̃ = 4αK. Let us summarize these results in the following
theorem.

Theorem 3.4. Let A be given by (3.20) with f and g given by

f = 4αK +
∫x

−∞
Ky ds, g = −1

2
(
Ky + αKx

)
. (3.26)

Then (3.19) is satisfied identically provided that K satisfies the partial differential equation

Kt +
1
2
(
3αKxxx +Kxxy

)
+
(∫x

−∞
Ky ds + 9αK − 5αλ

)
Kx + (2K − λ)Ky = 0. (3.27)
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4. Scalar Curvature of Three and Four-Dimensional Riemann Spaces

In the previous section, it has been seen that the Gauss equation for the two-dimensional
Riemann spaces connects the Gaussian curvature K to the coefficients of the metric. In fact,
two of the three components of the surface metric can always be transformed away by a
change of variables.

For three-dimensional Riemann spaces, by means of a transformation of coordinates,
the corresponding metric can be converted to diagonal form

ds2 = e1H2
1 dx

2
1 + e2H

2
2 dx

2
2 + e3H

2
3 dx

2
3, (4.1)

where ei = ±1 allow us to control the signs in the metric andHi are functions. In terms of the
components of the metric, the scalar curvature is given by

R =
∑

gilgkmRiklm. (4.2)

For the diagonal metric (4.1), R can be evaluated explicitly, and the scalar curvature takes the
following form:

−1
2
R =

1
H1H2

[
e2

∂

∂x2

(
1
H2

∂H1

∂x2

)
+ e1

∂

∂x1

(
1
H1

∂H2

∂x1

)]

+
1

H1H3

[
e1

∂

∂x1

(
1
H1

∂H3

∂x1

)
+ e3

∂

∂x3

(
1
H3

∂H1

∂x3

)]

+
1

H2H3

[
e2

∂

∂x2

(
1
H2

∂H3

∂x2

)
+ e3

∂

∂x3

(
1
H3

∂H2

∂x3

)]

+
1

H1H2H3

[
e1
H1

∂H2

∂x1

∂H3

∂x1
+
e2
H2

∂H1

∂x2

∂H3

∂x2
+
e3
H3

∂H1

∂x3

∂H2

∂x3

]
.

(4.3)

The factor −1/2 on the left side arises from a factor of −2 on the right-hand side divided out.
Let us begin with the simplest case for which H1 = H2 = 1 and H3 = H(x, y, z) with

e1 = e3 = 1, e2 = σ2. In this case, (4.3) takes the form

Hxx ±Hyy +
1
2
RH = 0. (4.4)

By setting

−1
2
R = U − E, H = ψ, (4.5)

(4.4) can be put in the equivalent form

−
(
∂2x + σ

2∂2y

)
ψ +U

(
x, y, z

)
ψ = Eψ. (4.6)
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For the case σ2 = 1, (4.6) becomes the two-dimensional stationary Schrödinger equation,
while for the case σ2 = −1 the perturbed string equation results.

As in the two-dimensional case, one can specify the dependence of the scalar curvature
R on another variable z by requiring that H, and hence ψ, obeys an additional linear partial
differential equation compatible with (4.6). Consider Riemann spaces such that the scalar
curvature and metric obey the linear system of equations

−
(
∂2x + σ

2∂2y

)
H − 1

2
RH = 0, Hz + Ã

(
R, . . . , ∂x, ∂y

)
H = 0. (4.7)

In (4.7), Ã is a linear partial differential operator. Equivalently, in terms of U and V , the
equations in (4.7) can be written as

−
(
∂2x − σ2∂2y

)
ψ +Uψ = Eψ, ψz + Ã

(
U, . . . , ∂x, ∂y

)
ψ = 0. (4.8)

The compatibility condition for this system is equivalent to a nonlinear partial differential
equation for the function U. It will be useful to write the first equation in (4.7) and (4.8) in
a different form for the following theorem by introducing the variables u and v which are
defined such that ∂u = ∂x − σ∂y and ∂v = ∂x + σ∂y.

Theorem 4.1. Consider the following system of partial differential equations:

Huv =
1
2
RH,

Hz = −αHuuu − βHvvv + 3αW2uHu + 3βW1vHv,

(4.9)

where α and β are constants withW1 andW2 given by

W1 =
1
2

∫u

−∞
Rdũ = −1

2
∂−1u R, W2 =

1
2

∫v

−∞
Rdṽ =

1
2
∂−1v R, (4.10)

Then the function R satisfies the following partial differential equation:

Rz + αRuuu + βRvvv − 3α(RW2u)u − 3β(RW1v)v = 0, W1,u =W2,v =
1
2
R. (4.11)

The proof of this goes along exactly the same lines as the previous theorems. It
suffices to substitute the integrals (4.10) into (4.9) and compute the compatibility condition
by calculating the derivativesHzuv,Huvz, which is some work, and then putting them in the
equationHzuv −Huvz = 0. This generates (4.11).

The result in (4.11) is the simplest and lowest member of a hierarchy of nonlinear
partial differential equations which is referred to as the Nizhnik-Veselov-Novikov equation.
This equation is integrable by means of the IST method. Its properties are different for the
cases σ2 = ±1 and E > 0, E < 0 and E = 0.

Continuing further, some nonlinear partial differential equations will be produced
which are associated with the scalar curvature equation (4.3).
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The first example to be considered corresponds to selectingH1 = H2 = H andH3 = 1,
which implies that the metric has the form

ds2 = H2 dx2
1 − σ2H2 dx2

2 − dx2
3. (4.12)

Equation (4.3) for the scalar curvature R then simplifies to the form

(lnH)xx − σ2(lnH)yy − 2HHzz −H2
z +

1
2
RH2 = 0. (4.13)

Suppose, for example, that we take H = expϕ so that upon differentiation Hz = ϕze
ϕ and

Hzz = ϕ2
ze

ϕ + ϕzzeϕ, then the equation takes the form

ϕxx − σ2ϕyy −
(
2ϕzz + 3ϕ2

z

)
e2ϕ +

1
2
Re2ϕ = 0. (4.14)

If instead we take e3 = +1 in the metric, the equation obtained from (4.3) is given by

ϕxx − σ2ϕyy +
(
2ϕzz + 3ϕ2

z

)
e2ϕ +

1
2
Re2ϕ = 0. (4.15)

When ϕz = 0 and R is put equal to a constant value, (4.15) reduces to the Liouville equation.
Another interesting case is the one in which trigonometric functions appear in the

metric. To have an example of this case, take e1 = 1, e2 = ∓σ2 and e3 = ∓1 with θ = θ(x, y, z),
andHj are given by

H1 = cos
θ

2
, H2 = sin

θ

2
, H3 = 1. (4.16)

Equation (4.3) can be simplified to the form

θxx ± σ2θyy ∓ cos θθzz ± 3
4
sin θθ2z −

1
4
R sin θ = 0. (4.17)

Suppose that e1 = 1, e2 = −σ2, and e3 = −1 such that

H1 = cos θ, H2 = sin θ, H3 = θz. (4.18)
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The following equation results from (4.3):

sin θ
cos θ

θxxz − σ2 cos θ
sin θ

θyyz +
(
θxx + σ2θyy

)
θz +

1
2cos2θ

(
θ2x

)
z +

σ2

2sin2θ

(
θ2y

)
z

+
(
3 − 1

4
R

)
sin θ cos θθz = 0.

(4.19)

Equation (4.19) can be considered to be a type of generalized sine-Gordon equation.
Another interesting equation results if we take e1 = 1, e2 = −σ2, and e3 = −1 with

H1 = eϕ, H2 = eϕ, H3 = ϕz. (4.20)

The equation for ϕ obtained from (4.3) using (4.20) is given by

(
ϕxx − σ2ϕyy

)
z
+
(
ϕxx − σ2ϕyy

)
ϕz +

(
3 +

1
4
R

)
ϕze

2ϕ = 0. (4.21)

Integrating this equation with respect to z, the following system is obtained:

ϕxx − σ2ϕyy − τe−ϕ + e2ϕ = 0, τz =
(
6 +

1
4
R

)
ϕze

3ϕ. (4.22)

To prove (4.22), multiply the first equation by eϕ and differentiate both sides with respect to
z to obtain

(
ϕxx − σ2ϕyy

)
z
eϕ +

(
ϕxx − σ2ϕyy

)
ϕze

ϕ − τz + 3ϕze3ϕ = 0. (4.23)

Substituting τz from (4.22) and factoring eϕ, the original equation (4.21) is obtained.
For the case in which the scalar curvature R is independent of z, the second equation

in (4.22) can be written as

τz =
1
3

(
6 +

1
4
R

)(
e3ϕ

)
z
. (4.24)

By integration, this implies that τ is given by

τ =
(
2 +

1
12
R

)
e3ϕ + ξ

(
x, y

)
, (4.25)

where ξ(x, y) is an arbitrary function of (x, y). Substituting τ from (4.25) into the first
equation of (4.22), we get

ϕxx − σ2ϕyy − ξ
(
x, y

)
e−ϕ −

(
1 +

R

12

)
e2ϕ = 0. (4.26)
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Another interesting case to examine is the one in which the metric is given by ds2 = H2(dx2+
dy2 + dz2). For the metric in this form, (4.3) reduces to

Hxx +Hyy +Hzz − 1
2H

(
H2

x +H
2
y +H

2
z

)
− 1
8
RH3 = 0. (4.27)

In terms of a function ϕ which is defined by H = ϕ2, this equation reduces to the following
form:

ϕxx + ϕyy + ϕzz − R

16
ϕ5 = 0. (4.28)

Finally, some equations relevant to a four-dimensional Riemann space with diagonal
metric which is an extension of (4.1) will be determined. The metric is written as

ds2 = e1H2
1 dx

2
1 + e2H

2
2 dx

2
2 + e3H

2
3 dx

2
3 + e4H

2
4 dx

2
4, (4.29)

where ei = ±1 as before, and Hj are functions to be specified in a given case. The scalar
curvature can be calculated by means of (4.2) given the components of metric (4.29). Some
equations will be determined based on metric (4.29) in the following.

(i) Suppose that we take e1 = 1, e2 = σ2, e3 = 1, and e4 = σ2 with the functions
H1 = H2 = H3 = exp(ϕ),H4 = 1. Equation (4.2) produces the following equation:

ϕxx + ϕyy + ϕzz +
3
2
σ2e2ϕϕww +

1
2

(
ϕ2
x + σ

2ϕ2
y + ϕ

2
z + 6σ2e2ϕϕ2

w

)
− 1
8
Re2ϕ = 0. (4.30)

(ii) The case in which e1 = 1, e2 = σ2, e3 = 1, and e4 = σ2 with functions H1 = H2 = eϕ

andH3 = H4 = 1 yields

ϕxx + σ2ϕyy + 2e2ϕϕzz + 2σ2e2ϕϕww + 3e2ϕϕ2
z + 3e2ϕϕ2

w − 1
4
Re2ϕ = 0. (4.31)

(iii) The selection ei = 1 with H1 = H2 = H3 = eϕ and H4 = ϕw produces the following
equation:

1
2ϕw

(
ϕxxw + ϕyyw + ϕzzw

)
ϕxx + ϕyy + ϕzz +

1
2

(
ϕ2
x + ϕ

2
y

)

+
1

2ϕw

(
ϕxϕxw + ϕyϕyw + ϕzϕzw

)
+
(
3 − 1

8
R

)
e2ϕ = 0.

(4.32)

(iv) When the metric is diagonal of the form ds2 = H2(dx2 + dy2 + dz2 + dw2) and all
ei = 1, the equation generated by (4.3) is given by

Hxx +Hyy +Hzz +Hww − 1
24
RH3 = 0. (4.33)
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If we takeH = ϕ2 in (4.33), we obtain the equation

ϕxx + ϕyy + ϕzz + ϕww +
1
ϕ

(
ϕ2
x + ϕ

2
y + ϕ

2
z + ϕ

2
w

)
− 1
24
Rϕ5 = 0. (4.34)

(v) As a final example, suppose that e1 = e3 = 1, e2 = e4 = −1 and trigonometric
functions are used for theHj in the metric,H1 = H3 = cos θ,H2 = H4 = sin θ, then
the equation for θ can be put in the form

sin3θ cos θ
(
sin2θ − 2cos2θ

)
(θxx + θzz) + cos3θ sin θ

(
cos2θ − 2sin2θ

)(
θyy + θww

)

+
(
4sin6θ − cos6θ

)(
θ2x + θ

2
z

)
−
(
4cos6θ − sin6θ

)(
θ2y + θ

2
w

)
+
1
4
R sin4θ cos4θ = 0.

(4.35)

5. Conclusions

It has been shown that several equations of physical interest arise within the analysis of
the geometry of surfaces, such as the Liouville and Schrödinger equations, or as a result
of the compatibility condition of two linear equations. Moreover, these equations can be
combined in such a way as to produce integrable evolutions or deformations of surfaces.
An introduction to a more systematic approach to going to higher dimensional partial
differential equations has been mentioned. Finally, by calculating the scalar curvature based
on the Riemannian metric for three- and four-dimensional Riemann spaces, a large group
of nonlinear partial differential equations has been determined in both three and four
dimensions. It remains as a separate task to begin to study the various kinds of solutions
and their characteristics for some of these equations.

References

[1] D. G. Gross, C. N. Pope, and S. Weinberg, Two Dimensional Quantum Gravity and Random Surfaces,
World Scientific, Singapore, 1992.

[2] D. Nelson, T. Piran, and S. Weinberg, Statistical Mechanics of Membranes and Surfaces, World Scientific,
Singapore, 1992.

[3] P. Bracken and A. M. Grundland, “Symmetry properties and explicit solutions of the generalized
Weierstrass system,” Journal of Mathematical Physics, vol. 42, no. 3, pp. 1250–1282, 2001.

[4] P. Bracken, “Partial differential equations which admit integrable systems,” International Journal of
Pure and Applied Mathematics, vol. 43, no. 3, pp. 409–421, 2008.

[5] M. J. Ablowitz and P. A. Clarkson, Solitons, Nonlinear Evolution Equations and Inverse Scattering, vol.
149 of London Mathematical Society Lecture Note Series, Cambridge University Press, Cambridge, UK,
1991.

[6] P. Bracken, A. M. Grundland, and L. Martina, “The Weierstrass-Enneper system for constant mean
curvature surfaces and the completely integrable sigma model,” Journal of Mathematical Physics, vol.
40, no. 7, pp. 3379–3403, 1999.

[7] S. S. Chern and K. Tenenblat, “Pseudospherical surfaces and evolution equations,” Studies in Applied
Mathematics, vol. 74, no. 1, pp. 55–83, 1986.

[8] R. Sasaki, “Soliton equations and pseudospherical surfaces,” Nuclear Physics B, vol. 154, no. 2, pp.
343–357, 1979.

[9] F. Calogero and A. Degasperis, Spectral Transform and Solitons. Vol. I, vol. 13 of Studies in Mathematics
and Its Applications, North-Holland, Amsterdam, The Netherlands, 1982.



16 International Journal of Mathematics and Mathematical Sciences

[10] B. G. Konopelchenko, “Soliton curvatures of surfaces and spaces,” Journal of Mathematical Physics, vol.
38, no. 1, pp. 434–457, 1997.

[11] B. G. Konopelchenko, Introduction to Multidimensional Integrable Equations, Plenum, New York, NY,
USA, 1992.

[12] S. S. Chern, W. H. Chen, and K. S. Lam, Lectures on Differential Geometry, vol. 1 of Series on University
Mathematics, World Scientific, Singapore, 1999.

[13] L. D. Landau and E. M. Lifshitz, Quantum Mechanics, Pergamon Press, Oxford, UK, 1997.
[14] R. Beutler and B. G. Konopelchenko, “Surfaces of revolution via the Schrödinger equation:

construction, integrable dynamics and visualization,” Applied Mathematics and Computation, vol. 101,
no. 1, pp. 13–43, 1999.

[15] P. Bracken, “Dynamics of induced surfaces in four-dimensional Euclidean space,” Pacific Journal of
Applied Mathematics, vol. 1, no. 2, pp. 207–220, 2008.

[16] I. A. Taimanov, “Surfaces of revolution in terms of solitons,” Annals of Global Analysis and Geometry,
vol. 15, no. 5, pp. 419–435, 1997.

[17] B. G. Konopelchenko, “Induced surfaces and their integrable dynamics,” Studies in Applied
Mathematics, vol. 96, no. 1, pp. 9–51, 1996.

[18] B. W. Char, K. O. Geddes, B. L. Leong, M. Monagen, and S. Watt, Maple V Language Reference Manual,
Springer, New York, NY, USA, 1991.

[19] V. E. Zakharov, “Integrable systems in multidimensional spaces,” in Mathematical Problems in
Theoretical Physics, vol. 153 of Lecture Notes in Physics, pp. 190–216, Springer, Berlin, Germany, 1982.


