Boundary Value Problems
Volume 2007 (2007), Article ID 74517, 10 pages
doi:10.1155/2007/74517
Abstract
We study the existence and multiplicity of positive solutions for a class of nth-order singular nonlocal boundary value problemsu(n)(t)+a(t)f(t,u)=0, t∈(0,1), u(0)=0, u'(0)=0, …,u(n−2)(0)=0, αu(η)=u(1), where 0<η<1, 0<αηn−1 <1. The singularity may appear at t=0 and/or t=1. The Krasnosel'skii-Guo theorem on cone expansion and compression is used in this study. The main results improve and generalize the existing results.