Abstract and Applied Analysis
Volume 3 (1998), Issue 1-2, Pages 191-201
doi:10.1155/S1085337598000517
Multiple solutions for a problem with resonance involving the p-Laplacian
C.O. Alves1
, P.C. Carrião2
and O.H. Miyagaki3
1Departamento de matemática e Estatística, Universidade Federal da Paraíba, Campina Grande 58109-970, (PB), Brazil
2Departamento de Matemática, Universidade Federal de Minas Gerais, Belo Horizonte 31270-010, (MG), Brazil
3Departamento de Matemática, Universidade Federal de Viçosa, Viçosa 36571-000, (MG), Brazil
Abstract
In this paper we will investigate the existence of multiple solutions for the problem (P) −Δpu+g(x,u)=λ1h(x)|u|p−2u, in Ω, u∈H01,p(Ω) where Δpu=div(|∇u|p−2∇u) is the p-Laplacian operator, Ω⫅ℝN is a bounded domain with smooth boundary, h and g are bounded functions, N≥1 and 1<p<∞. Using the Mountain Pass Theorem and the Ekeland Variational Principle, we will show the existence of at least three solutions for (P).