MULTIPLE SOLUTIONS FOR A PROBLEM WITH RESONANCE INVOLVING THE *p*-LAPLACIAN

C. O. ALVES*, P. C. CARRIÃO** AND O. H. MIYAGAKI***

ABSTRACT. In this paper we will investigate the existence of multiple solutions for the problem

(P) $-\Delta_p u + g(x,u) = \lambda_1 h(x) |u|^{p-2} u$, in Ω , $u \in H_0^{1,p}(\Omega)$ where $\Delta_p u = \operatorname{div} \left(|\nabla u|^{p-2} \nabla u \right)$ is the p-Laplacian operator, $\Omega \subseteq \mathbb{R}^N$ is a bounded domain with smooth boundary, h and g are bounded functions, $N \ge 1$ and 1 . Using the Mountain Pass Theorem and the EkelandVariational Principle, we will show the existence of at least three solutionsfor (P).

1. INTRODUCTION

In this paper, we will investigate the existence of multiple solutions for the problem

(P)
$$\begin{cases} -\Delta_p u + g(x, u) = \lambda_1 h(x) |u|^{p-2} u, & \text{in } \Omega, \\ u = 0 & \text{on} \quad \partial \Omega, \end{cases}$$

where $\Delta_p u = \operatorname{div}(|\nabla u|^{p-2} \nabla u)$ is the p-Laplacian operator, $1 , <math>N \ge 1$, Ω is a bounded domain with smooth boundary,

(G₁)
$$g: \Omega \times I\!\!R \to I\!\!R$$
 is bounded continuous function
satisfying $g(x, 0) = 0$,

and its primitive denoted by

Received: March 18, 1998.

¹⁹⁹¹ Mathematics Subject Classification. Primary: 35A05, 35A15, 35J20.

 $Key\ words\ and\ phrases.$ Radial solutions, Critical Sobolev exponents, Palais-Smale condition, Mountain Pass Theorem.

^{*} Supported in part by Fapemig/ Brazil.

^{**} Supported in part by Fapemig and CNPq/Brazil.

^{***} Supported in part by Fapemig and CNPq/ Brazil.

C. O. ALVES, P. C. CARRIÃO AND O. H. MIYAGAKI

(G₂)
$$G(x,s) = \int_{0}^{s} g(x,t)dt$$
 is assumed to be bounded,

 λ_1 is the first eigenvalue of the following eigenvalue problem with weight

$$(\mathbf{P}_A) \qquad \begin{cases} -\Delta_p u &= \lambda_1 h(x) |u|^{p-2} u, \quad \text{in} \quad \Omega, \\ u = 0 \quad \text{on} \quad \partial \Omega, \end{cases}$$

where

(h)
$$0 \le h \in L^{\infty}(\Omega)$$
 with $h > 0$ on subset of Ω with positive measure.

We recall that λ_1 is simple, isolated and it is the unique eigenvalue with positive eigenfunction Φ_1 (see [1] or [2]). There are many papers treating problem (P) with h = 1, among others, we would like to mention Lazer & Landesman [3], Ahmad, Lazer & Paul [4], De Figueiredo & Gossez [5], Amann, Ambrosetti & Mancini [6], Ambrosetti & Mancini [7], Thews [8], Bartolo, Benci & Fortunato [9], Ward [10], Arcoya & Cañada [11], Costa & Silva [12], Fu [13], Gonçalves & Miyagaki [14] when p = 2, and Boccardo, Drábek & Kučera [15], Anane & Gossez [16], Ambrosetti & Arcoya [17], Arcoya & Orsina [18], Fu & Sanches [19] when $p \neq 2$.

We shall show in this paper, the existence of multiple solutions for problem (P), by using similar arguments explored in [14] and [19]. Combining a version of the Mountain Pass Theorem due to Ambrosetti & Rabinowitz (see [20] and [25]) and the Ekeland variational principle (see [21, Theorem 4.1]), we will find nontrivial critical points of Euler- Lagrange functional associated to (P) given by

(1)
$$I(u) = \frac{1}{p} \int_{\Omega} |\nabla u|^p - \frac{\lambda_1}{p} \int_{\Omega} h |u|^p + \int_{\Omega} G(x, u) , \ u \in H^{1,p}_0(\Omega),$$

which are weak solutions of (P).

Hereafter, we will denoted by $\| \|$ and $| |_p$ the usual norms on the spaces $H_0^{1,p}(\Omega)$ and $L^p(\Omega)$ respectively, and by W the closed subspace

$$W = \left\{ u \in H_0^{1,p}(\Omega) \ / \ \int_{\Omega} h \, u \, |\Phi_1|^{p-2} \, \Phi_1 = 0 \right\}$$

We can easily prove that W is a complementary subspace of $\langle \Phi_1 \rangle$. Therefore we have the following direct sum (see e.g. Brézis [22])

$$H_0^{1,p}(\Omega) = \langle \Phi_1 \rangle \oplus W.$$

We will be denoted by λ_2 , the following real number

$$\lambda_2 = \inf_{u \in W} \left\{ \int_{\Omega} |\nabla u|^p ; \int_{\Omega} h |u|^p = 1 \right\},\,$$

and we remind that this value is the second eigenvalue of the p-Laplacian (see [23] or [24]).

From simplicity and isolation of λ_1 (see [1] or [2]), we have $0 < \lambda_1 < \lambda_2$ and by definition of λ_2 it follows that

$$\int_{\Omega} h |w|^{p} \leq \frac{1}{\lambda_{2}} \int_{\Omega} |\nabla w|^{p} , \quad \forall w \in W.$$

192

In this work, we will impose the following condition

(G₃)
$$g(x,t)t \to 0$$
, as $|t| \to \infty$, $\forall x \in \Omega$,

which appeared in [7] for p = 2 and [17] for the general case p > 1. This condition together with the assumptions on the limits

$$T(x) = \liminf_{|t| \to \infty} G(x,t) \quad \text{and} \quad S(x) = \limsup_{|t| \to \infty} G(x,t), \quad \forall x \in \Omega,$$

imply that problem (P) is in the class of the strongly resonance problem in the sense of Bartolo-Benci & Fortunato [9].

The following condition means a nonresonance with higher eigenvalues

(G₄)
$$G(x,t) \ge \left(\frac{\lambda_1 - \lambda_2}{p}\right) h(x) |t|^p, \quad \forall x \in \Omega, \quad \forall t \in \mathbb{R}.$$

In addition to (G_3) which is a behaviour of g at infinity, we assume a condition of the behaviour of G at origin

(G₅) there exist
$$0 < \delta$$
 and $0 < m < \lambda_1$ such that $G(x,t) \ge \frac{m}{p}h(x) |t|^p$, for $|t| < \delta$, $\forall x \in \Omega$.

Our main result is the following:

Theorem 1. Assume conditions (h), (G_1) - (G_5) . Then, problem (P) has at least three solutions u_1 , u_2 and u_3 , with

$$I(u_1), I(u_2) < 0 \text{ and } I(u_3) > 0,$$

provided that the following conditions hold

(G₆) there exist
$$t^-$$
, $t^+ \in \mathbb{R}$ with $t^- < 0 < t^+$ such that $\int_{\Omega} G(x, t^{\pm} \Phi_1) \leq \int_{\Omega} T(x) dx < 0$,

and

(G₇)
$$\int_{\Omega} S(x) dx \le 0.$$

Remark 1. Theorem 1 improves in some sense the main result proved in [14], since the proof given in [14] works only in Hilbert space framework.

2. Preliminary Results

In this section, we will state and prove some results required in the proof of Theorem 1. We recall that $I : H_0^{1,p}(\Omega) \to \mathbb{R}$ is said to satisfy Palais-Smale condition at the level $c \in \mathbb{R}$ ((PS)_c in short), if any sequence $\{u_n\} \subset$ $H_0^{1,p}(\Omega)$ such that

$$I(u_n) \to c$$
 and $I'(u_n) \to 0$,

possesses a convergent subsequence in $H_0^{1,p}(\Omega)$.

Lemma 1. Assume (h), (G1) and (G2). Then I satisfies the $(PS)_c$ condition $\forall c < \int_{\Omega} T(x) dx$.

Proof. We are going to adapt some arguments used in [16, p.1148]. First of all, we shall show that $\{u_n\}$ is bounded. Assume that $\{u_n\}$ is unbounded, therefore, up to subsequence, we have

$$||u_n|| \to \infty.$$

Letting

$$(*_n) v_n = \frac{u_n}{\|u_n\|},$$

we can assume that there exists $v \in H_0^{1,p}(\Omega)$ such that

$$v_n \rightharpoonup v \text{ in } H_0^{1,p}(\Omega)$$

and

$$v_n \to v$$
 in $L^s(\Omega)$, for $1 \le s < p^* = \frac{Np}{N-p}$

Now, we will show that $v \neq 0$ and that there exists $\gamma \in \mathbb{R}$ such that

$$v(x) = \gamma \Phi_1(x), \quad \forall x \in \Omega.$$

From (1) and choosing $t_n = ||u_n||$, we obtain

(2)
$$\frac{I'(u_n)u_n}{t_n^p} = \int_{\Omega} |\nabla v_n|^p - \lambda_1 \int_{\Omega} h |v_n|^p + \frac{1}{t_n^p} \int_{\Omega} g(x, u_n)u_n.$$

Using (G1) together with the fact that

$$\lim_{n \to \infty} \frac{I'(u_n)u_n}{t_n^p} = 0,$$

we get

(3)
$$\int_{\Omega} h |v|^p = \frac{1}{\lambda_1}$$

and therefore $v \neq 0$.

Using the weak convergence $v_n \rightharpoonup v$, we know that

$$\|v\| \le 1.$$

By (3) and (4), it follows that v is an eigenfunction for λ_1 . Then there exists $\gamma \in \mathbb{R}$ such that

(5)
$$v(x) = \gamma \Phi_1(x), \ \forall x \in \Omega$$

In particular,

$$\frac{u_n}{\|u_n\|} \to \gamma \Phi_1, \, \forall x \in \Omega,$$

which implies

$$|u_n(x)| \to \infty, \ \forall x \in \Omega$$

and by (G2) and Fatou's lemma, we have

(6)
$$\liminf_{n \to \infty} \int_{\Omega} G(x, u_n(x)) dx \ge \int_{\Omega} \liminf_{n \to \infty} G(x, u_n(x)) dx \ge \int_{\Omega} T(x) dx.$$

Now, using the inequality

(7)
$$c + o_n(1) = I(u_n) \ge \int_{\Omega} G(x, u_n(x)) dx$$

194

we have by (6) that

$$c \geq \int_{\Omega} T(x) dx,$$

which contradicts the hypothesis on the level c, then $\{u_n\}$ is bounded. Let $u \in H_0^{1,p}(\Omega)$ be a function such that $u_n \rightharpoonup u$, using a similar arguments explored in [18], we can conclude that

$$u_n \to u$$
 in $H_0^{1,p}(\Omega)$,

and Lemma 1 follows. \blacksquare

We will denote by
$$Q^{\pm}$$
 the following sets

$$Q^+ = \{t\Phi_1 + w, t \ge 0 \text{ and } w \in W\}$$

and

$$Q^- = \{t\Phi_1 + w, t \le 0 \text{ and } w \in W\}$$

It is easy to see that

$$\partial Q^+ = \partial Q^- = W.$$

Lemma 2. If conditions (h), (G2) and (G6) hold, then functional I is bounded from below on $H_0^{1,p}(\Omega)$. Moreover, the infimum is negative on Q^+ and Q^- .

Proof. From condition (G2), its easy to see that I is bounded from below on $H_0^{1,p}(\Omega)$.

Using condition (G6), we have

$$I(t^{\pm}\Phi_1) = \int_{\Omega} G(x, t^{\pm}\Phi_1) \le \int_{\Omega} T(x) dx < 0,$$

therefore

$$\inf_{u\in Q^\pm} I(u) < 0. \bullet$$

Remark 2. Using condition (G_4) and the definition of the number λ_2 , we remark that

$$I(w) \ge \frac{1}{p} \int_{\Omega} |\nabla w|^p - \frac{\lambda_2}{p} \int_{\Omega} h(x) |w|^p \ge 0, \ \forall w \in W.$$

Therefore Lemma 2 implies that if the infimum of I on Q^{\pm} is achieved by, for example, $u_0^{\pm} \in Q^{\pm}$, we can assume that

(8)
$$u_0^{\pm} \in Q^{\pm} \setminus W.$$

This fact is very important when we are working with Ekeland's variational principle.

Theorem 2. If conditions (h), (G1), (G2), (G4) and (G6) hold, then there exist $u_1 \in Q^+$ and $u_2 \in Q^-$ solutions of (P), such that

$$I(u_1), I(u_2) < 0.$$

Proof. From the proof of Lemma 2 we can conclude that

$$\inf_{u \in Q^{\pm}} I(u) \le \int_{\Omega} G(x, t^{\pm} \Phi_1) \le \int_{\Omega} T(x) dx < 0.$$

 \mathbf{If}

$$\inf_{u \in Q^{\pm}} I(u) = \int_{\Omega} G(x, t^{\pm} \Phi_1) = I(t^{\pm} \Phi_1) \le \int_{\Omega} T(x) dx < 0$$

occurs we can take $u_1 = t^+ \Phi_1$ and $u_2 = t^- \Phi_1$. Otherwise if

$$\inf_{u \in Q^{\pm}} I(u) < \int_{\Omega} G(x, t^{\pm} \Phi_1) \le \int_{\Omega} T(x) dx,$$

holds using the Ekeland's variational principle and the same argument explored in [14], we can show that there exist sequences $\{u_n\} \subset Q^+$ and $\{v_n\} \subset Q^-$ satisfying

$$I(u_n) \to \inf_{u \in Q^+} I(u) \text{ and } I'(u_n) \to 0,$$

and

$$I(v_n) \to \inf_{u \in Q^-} I(u) \text{ and } I'(v_n) \to 0.$$

By Lemma 1, there exist u_1 and u_2 such that

$$u_n \to u_1$$
 and $v_n \to u_2$ in $H_0^{1,p}(\Omega)$.

Therefore, u_1 and u_2 are solutions of (P) verifying

$$I(u_1) = \inf_{u \in Q^+} I(u) < 0 \text{ and } I(u_2) = \inf_{u \in Q^-} I(u) < 0,$$

which implies from Remark 2 that $u_1 \in Q^+$ and $u_2 \in Q^-$. This completes the proof of Theorem 2.

4. EXISTENCE OF A THIRD SOLUTION (MOUNTAIN PASS)

Using condition (G5) and arguing as in [14], we can easily show that

(9)
$$G(x,t) \ge \frac{m}{p} h(x) |t|^p - C |t|^\sigma, \quad \forall x \in \Omega, \quad t \in \mathbb{R}$$

where $p < \sigma < p^*$ and C is a constant independent of x. By (9), we have that

$$I(u) \ge \frac{m}{p\lambda_1} \int_{\Omega} |\nabla u|^p - C \int_{\Omega} |u|^{\sigma},$$

and then

(10)
$$I(u) \ge \frac{m}{p\lambda_1} \|u\|^p + o(\|u\|), \text{ as } \|u\| \to 0.$$

Using (G6), we obtain

$$I(t^{\pm}\Phi_1) < 0,$$

which together with (10) imply that there exist $r, \rho > 0$ and $e = t^+ \Phi_1$ such that

 $I(u) \ge r > 0$, for $||u|| \le \rho$ and I(e) < 0.

196

Therefore, using a version of the Mountain Pass Theorem without a sort of Palais-Smale condition [25, Theorem 6], there exists a sequence $\{u_n\} \subset H_0^{1,p}(\Omega)$ satisfying

(11)
$$I(u_n) \to c \ge r > 0 \text{ and } \|I'(u_n)\|_{H_0^{1,p}(\Omega)^*} (1 + \|u_n\|) \to 0.$$

Remark 3. We recall the sequence obtained in (11) was introduced by Cerami in [26].

Theorem 3. If conditions (h), (G1) - (G3) and (G5)-(G7) hold, then problem (P) has a solution u_3 , with

$$I(u_3) > 0.$$

Proof. Let $\{u_n\} \subset H_0^{1,p}(\Omega)$ be the sequence obtained in (11); then arguing as in Lemma 1, if $\{u_n\}$ is unbounded, we can assume that

(12)
$$|u_n(x)| \to \infty, \quad \forall x \in \Omega.$$

Using (11), we have

$$o_n(1) = I'(u_n)(u_n) = ||u_n||^p - \lambda_1 |u_n|_p^p + \int_{\Omega} g(x, u_n) u_n dx,$$

and then

$$0 \le ||u_n||^p - \lambda_1 ||u_n|_p^p \le -\int_{\Omega} |g(x, u_n)u_n| + o_n(1)$$

Combining (12), (G3) with the inequality above, we conclude that

$$||u_n||^p - \lambda_1 |u_n|_p^p \to 0.$$

Now, using the equality

$$c + o_n(1) = I(u_n) = \frac{1}{p} \left[\|u_n\|^p - \lambda_1 \|u_n\|_p^p \right] + \int_{\Omega} G(x, u_n(x)) dx$$

together with Fatou Lemma and (G7) we obtain

$$c \leq \limsup_{n \to \infty} \int_{\Omega} G(x, u_n(x)) dx \leq \int_{\Omega} S(x) dx \leq 0,$$

which is a contradiction , because c>0 by (11). Then $\{u_n\}$ is bounded. Let $u_3 \in H_0^{1,p}(\Omega)$ be such that

(13)
$$u_n \rightharpoonup u_3.$$

By a similar argument explored in [18], we have that

(14) $u_n \to u_3 \text{ in } H_0^{1,p}(\Omega),$

and consequently

$$I(u_3) = c \ge r > 0$$
 and $I'(u_3) = 0$,

which shows that u_3 is a solution of problem (P).

5. Proof of Theorem 1

Theorem 1 is an immediate consequence of Theorems 2 and 3. \blacksquare

6. Example

Making $\Omega = (0, 1)$, p = 2, and h = 1, we shall give an elementary example of a nonlinearity g verifying the set of assumptions.

We recall that $\lambda_n = n^2$, n = 1, 2, ... are eigenvalues of (P_A) and $\Phi_1 = \sin \pi x$ is the first eigenvalue of (P_A) .

Let $g: \Omega \times I\!\!R \rightarrow I\!\!R$ defined by

$$g(x,s) = R(x)g_1(s),$$

where $g_1 : \mathbb{R} \to \mathbb{R}$ is given by

$$g_1(s) = \begin{cases} s, & \text{for} & 0 \le s \le 1, \\ 2-s, & \text{for} & 1 < s \le 5, \\ s-8 & \text{for} & 5 < s \le 8 + \frac{\sqrt{30}}{2}, \\ 8+\sqrt{30}-s, & \text{for} & 8 + \frac{\sqrt{30}}{2} < s \le 8 + \sqrt{30}, \\ 0 & \text{for} & s \ge 8 + \sqrt{30}, \\ -g(-s) & \text{for} & s \le 0, \end{cases}$$

and $R: \Omega \to I\!\!R$ is defined by

$$R(x) = \begin{cases} 4x + 1, & \text{for } 0 \le x \le \frac{1}{2}, \\ -4x + 5, & \text{for } \frac{1}{2} \le x \le 1. \end{cases}$$

Then

$$G_1(s) = \int_0^s g_1(t)dt$$
 and $G(x,s) = \int_0^s g(x,t)dt = R(x)G_1(s)$

and

$$S(x) = T(x) = -\frac{R(x)}{2}.$$

By the definition of g, it is easy to see that it verifies the conditions (Gi) for $i \neq 6$.

Thus, we shall prove that G satisfies (G6), for $t^+ = 8$. Indeed, observe that

$$G(x, 8\Phi_1(x)) = G(1-x, 8\Phi_1(1-x)), \ x \in \Omega,$$

that is, the function above is symmetric with respect to $x = \frac{1}{2}$. Then,

$$\int_{0}^{1} G(x, 8\Phi_{1}(x)) dx = 2 \int_{0}^{\frac{1}{2}} R(x)G_{1}(8\Phi_{1}(x)) dx$$
$$= 2 \int_{0}^{\frac{1}{2}} 4x G_{1}(8\Phi_{1}(x)) dx + 2 \int_{0}^{\frac{1}{2}} G_{1}(8\Phi_{1}(x)) dx$$
$$\equiv I_{1} + I_{2}.$$

Now, we shall estimate each integrals I_j , (j = 1, 2). Since $G_1(2 + \sqrt{2}) = 0$, choosing $\alpha_0 \in \mathbb{R}$ such that $8\Phi_1(\alpha_0) = 2 + \sqrt{2}$, which satisfies $0 < \alpha_0 < \frac{1}{6}$, we obtain

$$I_1 \le 2 \int_0^{\alpha_0} 4x \, G_1(8\Phi_1(x)) dx \le 8\alpha_0 < \frac{4}{3}.$$

On the other hand,

$$I_{2} = 2\left(\int_{0}^{\frac{1}{6}} + \int_{\frac{1}{6}}^{\frac{1}{3}} + \int_{\frac{1}{3}}^{\frac{1}{2}}\right)G_{1}(8\Phi_{1}(x))dx$$

$$\leq 2\left(\int_{0}^{\frac{1}{6}} G_{1}(2)dx + \int_{\frac{1}{6}}^{\frac{1}{3}} G_{1}(4)dx + \int_{\frac{1}{3}}^{\frac{1}{2}} G_{1}(6)dx\right)$$

$$\leq -2.$$

Therefore,

$$\int_{0}^{1} G(x, 8\Phi_{1}(x)) \, dx = I_{1} + I_{2} < -\frac{2}{3} < \int_{0}^{1} T(x) \, dx$$

Analogously for $t^- = -8$. This proves that G satisfies (G6).

Acknowledgments. The authors are grateful to the referee for his helpful remarks. Also, the first and the third author wish to thank the Departamento de Matemática, Universidade Federal de Minas Gerais, for the warm hospitality.

References

- A. Anane, Simplicité et isolation de la premieré valeur propre du p-Laplacien avec poids, C. R. Acad. Sci. Paris Sér. I Math. 305 (1987), 725–728.
- [2] W. Allegretto and Y. X. Huang, Eigenvalues of the indefinite-weight p-Laplacian in weighted spaces, Funkcial. Ekvac. 38 (1995), 233–242.
- [3] E. Landesman and A. C. Lazer, Nonlinear perturbations of linear elliptic boundary value problems at resonance, J. Math. Mech. 19 (1969/1970), 609–623.
- [4] S. Ahmad, A.C. Lazer and J. L. Paul, Elementary critical point theory and pertubations of elliptic boundary value problems at resonance, Indiana Univ. Math. J. 25 (1976), 933–944.
- [5] D. G. de Figueiredo and J.-P. Gossez, Nonlinear pertubations of a linear elliptic problem near its first eigenvalue, J. Differential Equations, 30 (1978), 1–19.
- [6] H. Amann, A. Ambrosetti and G. Mancini, *Elliptic equations with noninvertible Fred-holm linear part and bounded nonlinearities*, Math. Z. 158 (1978), 179–194.
- [7] A. Ambrosetti and G. Mancini, Existence and multiplicity results for nonlinear elliptic problems with linear part at resonance. The case of the simple eigenvalue, J. Differential Equations, 28 (1978), 220–245.
- [8] K. Thews, Nontrivial solutions of elliptic equations at resonance, Proc. Roy. Soc. Edinburgh Sect. A, 85 (1980), 119–129.

- [9] P. Bartolo, V. Benci and D. Fortunato, Abstract critical point theorems and applications to some nonlinear problems with "strong" resonance at infinity, Nonlinear Anal. 7 (1983), 981–1012.
- [10] J. Ward, Applications of critical point theory to weakly nonlinear value problems at resonance, Houston J. Math. 10 (1984), 291–305.
- [11] D. Arcoya and A. Cañada, Critical point theorems and applications to nonlinear boundary value problems, Nonlinear Anal. 14 (1990), 393–411.
- [12] D. G. Costa and E. A. B. Silva, Existence of solutions for a class of resonant elliptic problems, J. Math. Anal. Appl. 175 (1993), 411–424.
- [13] M. T. Fu, A note on the existence of two nontrivial solutions of a resonant problem, Portugal. Math. 51 (1994), 517–523.
- [14] J. V. Gonçalves and O. H. Miyagaki, Three solutions for a strongly resonant elliptic problem, Nonlinear Anal. 24 (1995), 265–272.
- [15] L. Boccardo, P. Drábek, M. Kučera, Landesman-Lazer conditions for strongly nonlinear boundary value problems, Comment. Math. Univ. Carolin. 30 (1989), 411–427.
- [16] A. Anane and J.-P. Gossez, Strongly nonlinear elliptic problems near resonance: a variational approach, Comm. Partial Differential Equations, 15 (1990), 1141–1159.
- [17] A. Ambrosetti and D.Arcoya, On a quasilinear problems at strongly resonance, Topol. Methods Nonlinear Anal. 6 (1995), 255–264.
- [18] D. Arcoya & L. Orsina, Landesman-Lazer conditions and quasilinear elliptic equations,, Nonlinear Anal. 28 (1997), 1623–1632.
- [19] M. T. Fu and L.Sanches, Three solutions of a quasilinear elliptic problem near resonance, Math. Slovaca, to appear.
- [20] A. Ambrosetti and P.H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Anal. 14 (1973), 349–381.
- [21] J. Mawhin and M. Willem, Critical point theory and Hamiltonian systems, Springer-Verlag, New York, 1989.
- [22] H. Brézis, Analyse fonctionnelle. Théorie et applications, Masson, Paris, 1983.
- [23] P. Fleckinger, J. P.Gossez, P. Takač and F. de Thélin, Existence, nonexistence et principe de l'antimaximun pour le p-laplacien, C. R. Acad. Sci. Paris Sér. I Math. 321 (1995), 731–734.
- [24] A. Anane and N. Tsouli, On the second eigenvalue of the p-Laplacian, Pitman Res. Notes Math. Ser., #343, 1996.
- [25] I. Ekeland, Convexity methods in Hamiltonian mechanics, Springer-Verlag (1994), NewYork.
- [26] G. Cerami, An existence criterion for the critical points on unbounded manifolds, Istit. Lombardo Accad. Sci. Lett. Rend. A, 112 (1978), 332–336.

C. O. Alves Departamento de matemática e Estatística Universidade Federal da Paraíba 58109-970 Campina Grande (PB)-BRAZIL E-mail address: coalves@dme.ufpb.br

P. C. CARRIÃO DEPARTAMENTO DE MATEMÁTICA UNIVERSIDADE FEDERAL DE MINAS GERAIS 31270-010 BELO HORIZONTE (MG)-BRAZIL

E-mail address: carrion@mat.ufmg.br

O. H. MIYAGAKI DEPARTAMENTO DE MATEMÁTICA UNIVERSIDADE FEDERAL DE VIÇOSA 36571-000 VIÇOSA (MG)- BRAZIL

E-mail address: olimpio@mail.ufv.br