нестареющее
начало (ч.04)
начало (ч.59)
10. Долой все тривиальное и несущественное. Бывает так, что утверждение, очевидное настолько, что об этом и говорить не стоит, формулируется в плохой фразе, которая задерживает внимание, запутывает и смущает. Я имею в виду Отвлекающие и ненужные предположения служат причиной лишней траты читательского времени; почти столько же времени отнимает автор, не завоевавший доверия читателя явным упоминанием тривиальных случаев, или, если нужно, исключением их. Всякое комплексное число является произведением некоторого неотрицательного числа и некоторого числа с модулем 1. Это верно, но читатель будет себя чувствовать неуверенно, если сразу после сказанного (быть может, ему напоминали это по Здесь, пожалуй, уместнее всего сказать несколько слов о формулировках теорем: именно в них, более, чем где бы то ни было, необходимо избегать не относящихся к делу деталей. Первый вопрос по этому поводу: когда формулировать теорему? Мой ответ: сразу. Избегайте праздных бесед бог весть о чем, в конце которых внезапно объявляется: «Итак, мы доказали, что…». Читатель будет гораздо внимательнее к доказательству, когда он знает, чтó вы доказываете; ему будет яснее, где используются предпосылки, если он знает их. (Праздный подход часто приводит к теоремам, повисающим в воздухе, что, Т е о р е м у 2.
». Такой перепад разрубает фразу; после того как читатель соберется с мыслями и сообразит, какую шутку с ним сыграли, этот прием произведет нежелательное отделение утверждения теоремы от ее формулировки.) Я не хочу сказать этим, что теорема должна появляться без вводных замечаний, предварительных определений и вспомогательных мотивировок. Все это идет сначала; потом формулировка, и, наконец, доказательство. Формулировка теоремы должна состоять, по возможности, из одной фразы: простой импликации, или, если некоторые общие предпосылки были сформулированы заранее и остаются в силе, простого утверждения. Разговоры вроде: «Без нарушения общности мы можем предположить…» или «Более того, из теоремы 1 следует…» оставляйте за пределами формулировки. В идеале утверждение теоремы это не просто одна фраза, а фраза короткая. Теоремы, формулировки которых занимают почти всю страницу (или еще больше!), трудно воспринимать, труднее, чем следует. Они показывают, что автор не продумал материал, и не организовал его. Список из восьми предпосылок (даже если они аккуратно сформулированы) и список из шести утверждений это не теорема: это плохо изложенная теория. Все ли предпосылки нужны для каждого утверждения? Если ответ отрицателен, то очевидно, что формулировка плоха; если же ответ положителен, то, вероятно, предпосылки описывают некое общее понятие, которое заслуживает быть выделенным, специально названным и изученным. 11. Повторяйтесь и не повторяйтесь. Одно важное правило хорошего математического стиля требует повторений, а другое требует избегать их. Под повторением в первом правиле я подразумеваю не произнесение одной и той же вещи несколько раз с помощью разных слов. Я имею ввиду дословное повторение фразы или даже нескольких фраз в изложении такого точного предмета, как математика, с той целью, чтобы подчеркнуть небольшие изменения в соседнем предложении. Если вы Зачастую для того, чтобы поступить так в главе 2, вам придется вернуться к главе 1 и переписать в ней то, что вам казалось написанным уже достаточно хорошо, на этот раз для подчеркивания параллелизма с соответствующей частью главы 2. Это, кстати, другая иллюстрация неизбежности спирального плана при сочинении, и другой аспект организации материала. В предыдущих абзацах описывалась важная разновидность математического повторения полезная; вот две другие вредные. Одна из причин, по которой повторение часто рассматривается как прием эффективного обучения, заключается в следующем: предполагается, что чем чаще вы повторяете одно и то же, тем более вероятно, что вы втолкуете сим материал. Я не согласен. Когда вы Вторая разновидность вредных повторений описана в короткой и лишь отчасти неточной заповеди: никогда не повторяйте доказательство. Если некоторые шаги в доказательстве теоремы 2 очень похожи на некоторые части доказательства теоремы 1, то это сигнал недопонимания. Вот другие симптомы этой болезни: «С помощью той же техники (того же метода, приема), которая применялась (или который использовался) в доказательстве теоремы 1…»; еще хуже: «См. доказательство теоремы 1». Когда случается такая вещь, то очень может быть, что на самом деле существует лемма, из которой с большой легкостью и ясностью выводятся обе теоремы; такую лемму стоит поискать, сформулировать и доказать. 12. Книжное «мы» не всегда плохо. Начинающих авторов часто беспокоит выбор между «я», «мы» и безличными формулировками. В случаях, подобных этому, здравый смысл важнее всего. По причинам целесообразности я выскажу здесь свои рекомендации. Поскольку лучший стиль наименее навязчивый, я склоняюсь к нейтральным оборотам. Но это не означает, что нужно один из них использовать чаще других или, того хуже, всегда. (Фразы типа: «итак, установлено, что…» ужасны.) Это означает полное отсутствие личных местоимений первого лица как в единственном, так и во множественном числе. «Так как имеет место р, q также справедливо…». «Из этого следует p». «Применение p к q дает r». Почти все (все?) математические сочинения информативны (или должны быть такими?); простые повествовательные предложения лучшее средство для сообщения фактов. Иногда эффективно и желательно использование повелительного наклонения. «Чтобы найти р, умножьте q на r». «При данном р приравняйте q и r». (Два отступления по поводу «Дано». Нет ничего худого в книжном «мы», но, если оно вам нравится, пользуйтесь им правильно. Пусть «мы» означает «автор и читатель» (или «лектор и аудитория»). Вы можете благополучно сказать «Используя лемму 2, мы можем обобщить теорему 1» или «Лемма 3 дает нам технику доказательства теоремы 4». Но не годятся утверждения вроде: «Мы получили этот результат в 1969 году» (если только это не будет голосом двух или более авторов, говорящих в унисон), или «Мы благодарим нашу жену за помощь при перепечатке рукописи». Местоимение «я» и, особенно, его неизменное повторение, порой производит отталкивающий эффект, как высокомерие или проповеднический тон; по этой причине я стараюсь избегать его, где только возможно. В коротких заметках, в личных замечаниях, или в очерках вроде этого оно на своем месте. 13. Правильно используйте слова. Единицы информации, в порядке убывания, таковы: тема, глава, абзац, фраза, слово. Раздел о местоимениях был посвящен словам, хотя, в несколько более строгом смысле, он содержал рекомендации о стратегии стиля. Мой следующий совет, как он звучит в заголовке, не следует понимать прямолинейно; само собой разумеется, что слова надо использовать правильно. Но вот что я хочу подчеркнуть: следует тщательно обдумывать и точно дозировать слова, взывающие к здравому смыслу и интуиции, с одной стороны, и специальные математические слова (технические термины), с другой. Это может глубоко влиять на математический смысл. Общее правило: корректно пользуйтесь терминами логики и математики. Я не призываю к педантизму и не предлагаю размножать технические термины для понятий, на волосок отличающихся друг от друга. Наоборот, я имею в виду мастерство настолько тонкое, чтобы оно не бросалось в глаза. Вот пример: «Доказать, что Вот один способ переделать фразу предыдущего абзаца, данную в качестве примера: условиться, что все «отдельные переменные» пробегают множество комплексных чисел, а потом написать нечто вроде такого выражения: Я настоятельно советую не делать этого. Символика формальной логики необходима в обсуждении логики и математики, однако в качестве средства сообщения идей от одного смертного к другому она превращается в громоздкий шифр. Автор должен сначала перекодировать свою мысль (я отрицаю, что кто бы то ни было мыслит в терминах $, », Ù и т.п.), а затем читатель вынужден расшифровать написанное автором; оба шага приводят к растрате времени и затрудняют понимание. Символическая запись, все равно, в стиле современного логика или классического эпсилониста, это текст, который могут писать машины, и едва ли О слове «any» достаточно. А вот другие нарушители, которые, правда, обвиняются в меньших преступлениях: «где», «эквивалентно», «если… то… если… то». «Где» обычно знак того, что автор нехотя подумал о том, о чем должен был подумать заранее. «Если n достаточно велико, то |аn|<e, где e любое наперед заданное положительное число»; болезнь и лечение от нее ясны. Слово «эквивалентный» для теорем логическая бессмыслица. (Под теоремой я подразумеваю математическую истину, нечто доказанное. Осмысленное утверждение может быть неверным, но теорема быть неверной не может: «неверная теорема» внутренне противоречивый термин.) Какой смысл говорить, что полнота пространства L² эквивалентна теореме о представлении линейных функционалов на L²? Имеется в виду, что доказательства обеих теорем средние по трудности, и если одна из них (любая) уже доказана, то другую можно доказать с относительно меньшими усилиями. Логически точное слово «эквивалентный» здесь не годится. Оборот «если… то… если… то» представляет собой стилистический прием, часто употребляемый скорыми авторами и огорчающий медлительных читателей. «Если справедливо р, то если имеет место q, то выполняется r». Логически тут все в порядке (р Þ (q Þ r)), но психологически на этом месте непременно споткнешься. Обычно нужно только переделать фразу; однако, универсального способа переделать ее нет. Все зависит от того, что важнее в данном конкретном случае. Можно так: «если p и q, то r»; или «при условии p из предположения q следует вывод r»; есть и многие другие варианты. 14. Правильно пользуйтесь техническими терминами. До сих пор речь шла, по существу, о логических аспектах стиля в математике. Теперь я хочу показать, что такое ненавязчивая точность языка в повседневной работе математика на трех примерах: функции, последовательности и включения. Я принадлежу к школе, для которой функции и их значения настолько разные вещи, что это различие должно соблюдаться. Не надо суетиться, по крайней мере на людях; просто старайтесь не произносить слова типа «функция «Последовательность» это функция, область определения которой является множеством натуральных чисел. Когда Слова «содержать» и «включать» почти всегда употребляются как синонимы, и часто теми же самыми людьми, которые старательно учат своих студентов, что символы Î и Ì это вовсе не одно и то же. Совершенно не правдоподобно, что использование этих слов вперемешку приведет к недоразумению. Тем не менее, несколько лет назад я начал эксперимент, который продолжаю и теперь: я систематически устно и письменно использовал глагол «содержать» для Î и «включать» для Ì. Едва ли я Постоянство, между прочим, великое достоинство изложения, а непостоянство смертный грех. Постоянство важно в языке, обозначениях, ссылках, разметке шрифтов оно важно всюду, а его отсутствие может вызвать все, что угодно, начиная с легкого раздражения и кончая полной дезинформацией. Мои советы об использовании слов можно резюмировать так. 15. Воздерживайтесь от обозначений. Все сказанное об употреблении слов с соответствующими изменениями и оговорками применимо к еще более мелкой единице математического сочинения к математическим символам. Лучшее обозначение отсутствие обозначений. Где только возможно, избегайте громоздкого алфавитного аппарата. Хорошо готовить письменное математическое сообщение, представляя себе, что оно устное. Вообразите, будто бы рассказываете все другу на Вот следствие из принципа «чем меньше обозначений, тем лучше их система»: не вводите ненужных букв, точно так же, как ненужных предложений. Пример: «На компактном пространстве всякая вещественнозначная непрерывная функция f ограничена». Зачем здесь f? Разве утверждение от этого становится яснее? Другой пример: «Если 0 £ lim an1/n = r < 1, то lim an = 0». Зачем тут r? Ответ одинаков в обоих случаях (незачем), но причины присутствия лишних букв могут быть различны. В первом случае f может появиться в результате дурной привычки; во втором случае r, возможно, подготавливает доказательство. От дурной привычки можно отвыкнуть. С другим излишеством труднее, потому что здесь автор должен поработать. Без r в формулировке доказательство станет на полстрочки длиннее; его нужно будет начать Эффективная формулировка принципа «не используйте ненужных букв» такова: «Не используйте ни одну букву однократно». Логики сказали бы это так: «Не оставляйте свободных переменных». В приведенном выше примере о непрерывных функциях символ f является свободной переменной. Лучший способ исключить это f опустить его. Иногда предпочтительнее превратить f из свободной переменной в связанную. Большинство математиков сделало бы это так: «Пусть f вещественнозначная непрерывная функция на компактном пространстве; тогда f ограничена». Некоторые логики станут, вероятно, настаивать на том, что f Правило «никогда не оставлять в предложении свободные переменные», как и многие другие правила, сформулированные мной, иногда лучше нарушать, чем соблюдать. В конце концов, фраза это условная единица изложения и если вам хочется оставить висеть в ней свободную переменную f, чтобы позднее, скажем, в этом же абзаце, этой f воспользоваться, то не думаю, что вас обязательно нужно гнать из авторского полка. Тем не менее, это здоровый принцип, он гибок, но бить его вдребезги не следует. Существуют и другие логические тонкости, способные остановить, или, в лучшем случае, задержать читателя, если с ними небрежно обращаться. Предположим, например, что в как некоторую, скажем, теорему о фиксированной функции f. Если позже вы столкнетесь с другой функцией g, которая тоже обладает этим свойством, то воспротивьтесь желанию сказать: «g также удовлетворяет (*)». Ведь это бессмыслица с точки зрения и логики и обозначений. Вместо этого скажите «условие (*) остается верным, если заменить f на g» или, что еще лучше, назовите Что можно сказать о выражениях типа «неравенство (*)», «уравнение (7)» или «формула (iii)»? Следует ли отмечать либо нумеровать все, что вынесено между строк? Мой ответ: нет. Причина: бесполезные ярлычки не нужны так же, как излишние предпосылки или никчемные обозначения. Небольшая часть внимания отвлекается на этот значок и уголком мозга читатель станет думать, к чему бы это. Если номер и вправду нужен, то внимание читателя будет незаметно подготовлено к будущей ссылке на эту же идею, но если ни к чему, то внимание и ожидание пропали впустую. Итак, пользоваться ярлычками следует скупо, но не впадайте в крайность. Я не советую поступать так, как однажды поступил Диксон [2]. На стр. 89 он говорит: «Затем… мы получаем (1)» а ведь на стр. 89 начинается новая глава и там вообще нет ни одной выделенной формулы, тем более с Громоздкие обозначения часто возникают при проведении индукции. Порой это неизбежно. Однако чаще достаточно объяснить переход от 1 к 2 и заключить воздушным «и так далее». Это не проигрывает в строгости подробным вычислениям, зато гораздо понятнее и убедительнее. Точно так же Во всех моих рассуждениях о вреде обозначений есть своя логика. Дело в том, что для глупой вычислительной машины существует лишь одно строгое понятие математического доказательства. Для человеческого же существа, одаренного геометрической интуицией, ежедневно растущим опытом, нетерпением и неспособностью сосредоточиться на надоедливых деталях, это не годится. Еще одним примером тому может служить любое доказательство, состоящее из цепи выражений, соединенных знаками равенства. Такое доказательство легко написать. Автор начинает с первого равенства, совершает естественную подстановку, чтобы получить второе, группирует, переставляет, вносит и тут же вдохновенно сокращает множители и так продолжает до тех пор, пока не получит последнее равенство. Это Известный прием плохого обучения начинать доказательство со слов: «Для данного e положим d равным (e/(3M² + 2))½». Это восходящий к традициям классического анализа способ писать доказательство от конца к началу. Его преимущество в том, что его легко проверить машине (но трудно понять человеку). Еще одно сомнительное преимущество этого же способа состоит в том, что в самом конце нечто оказывается меньше e, а не, скажем, (e(3M² + 7)/24)½. Как облегчить в данном случае жизнь читателю, очевидно: напишите доказательство от начала к концу. Начните, как всегда начинают авторы, фиксировав нечто меньшее, чем e, а потом делайте все, что нужно делать когда нужно, умножайте на ЗM² + 7, потом делите на 24 и т.д. и т.д. пока не выйдет то, что выйдет. Ни одно из расположений материала не отличается изяществом, но второй способ по крайней мере легче схватывается и запоминается.(*) ò | f (x)| 2 dx < ¥