![]()
Department of Computer Science Cardiff University UK INTRODUCTION CIRCULAR ROSETTES A circular rosette is formed by taking copies of a circle and rotating them about a pointthe rosette's centre (Figure 2). If the radius r of the circle is equal to the distance d between the point of rotation and the circle centres then the circles all meet at the centre of the rosette (Figure 3a). If the circle radii are smaller than d then they do not reach the rosette centre, creating a hole (Figure 3b). Likewise, an apparent hole is created when the circle radii are greater than d, although in this case the rosette centre is contained in all the circles. We see also that as the number of circles used to generate the rosettes increases the envelope of the external perimeter of the rosette converges to a circle with radius r+d while the envelope of the inner circle is a circle with radius d. Thus, we have the curious aspect that the same sized inner circular hole is created for a fixed value v, irrespective of whether r=d+v or r=d-v. To simplify matters we shall only consider the first case in which the circles meet at the rosette centre. The points of intersection between the circles is given by ![]() where t is the angle increment between successive circles,
i.e. if N number of circles then FIVE DISKS PROBLEM HYPOTROCHOIDS ![]() ![]() produces patterns very similar to circular rosettes as shown in Figure 6. The parameter q determines the number of lobes plus the equations can be modified to increase and decrease the fullness of the lobes. One can speculate that Albrecht Dürer may also have noticed the similarity. In addition to his artistic work, he realised that mathematics could provide a powerful tool for the artist, and was interested in the connections between art and mathematics. This lead to his becoming an important Renaissance mathematician (at least in terms of early dissemination of geometry rather than an extension of the field). In his book Unterweisung der Messung mit dem Zirkel und Richtscheit he describes not only a method for designing a circular rosette floor pattern but also the construction of a large number of curves including an epicycloid (the cardioid) [Dürer 1977]. The hypotrochoid is not the only curve with similar appearance to the rosette. In fact, in 1728 Guido Grande published Flores Geometrici, which described a host of curves producing flower-like patterns. VARIATIONS ON THE FORM Figures 7b and 7c show the effect of stretching the ellipse the other way so that it extends across the rosette rather than projecting outwards from the centre. When sufficient ellipses are included a fretwork pattern is generated in which a variety of shapes of interstices appear. Also, a circular ring is formed at the centre with radius equal to the ellipses' minor axis length. In Figures 7d and 7e, the generating circles have been replaced by superellipses [Gardner 1965] (actually supercircles since their aspect ratio is one). Due to the mixture of gently curving sides and sharper corners a more dynamic nature is created as the interstices seem to whorl into the centre from which several lotus shapes appear to emerge. If the circular rosette is uniformly stretched in any direction this results in a rosette with an overall elliptical form (Figure 8a)[1] The rotating circles become ellipses - although varying in eccentricity unlike the identical set of ellipses making up the previous example. Another variation on the theme of ellipses is given in the pavement in the Campidoglio which was designed by Michaelangelo (although not executed until 1940). The final version shows a more subtle construction than the above uniform stretching. The inner ring is a circle and successive rings are increasingly stretched so as to provide a gradual transition to the outer ellipse. Other patterns can be constructed in a similar way to the circular rosette, but modifying the positions of the circles and/or their size. For instance, the nephroid and cardioid in Figures 8b and 8c retain the same positions for the circles as the rosette but their radii are a function of position. VARIATIONS IN ARTICULATION Even simplifying the pattern to a single rosette with infinitely thin boundaries, and butting the ellipses right up to the circles still results in a difficult geometric pattern to analyse. The principal problem involves the ellipses since determining inscribed ellipses is not straightforward. To simplify analysis we approximate the curvilinear rhombus
by a standard straight-sided rhombus (Figure
9). We can then follow the laborious procedure known
to draughtsmen for determining the inscribed ellipse to a parallelogram
[Browning 1996].[2]
In fact, for a rhombus the problem simplifies greatly. The rhombus's
and ellipse's centres are coincident, and we find that if the
lengths of the rhombus's axes are a and b, then
the lengths of the ellipse's axes are As Figure 10a shows, the error caused by the approximation incurred by the straight-sided rhombus can be significant. The ellipse appears about the right size, but is shifted in towards the centre of the rosette. As the number of circles increases then the arcs making up the rhombuses' sides shorten, decreasing the total curvature. This means that the approximation error also decreases, and as can be seen in Figure 10b the ellipses fit the interstices much better. A couple of simple corrections were tested to see if there was an easy procedure for inscribing the ellipses more accurately. The first correction is based on two corners of the rhombus that are equidistant from the rosette centre. Our original method effectively takes their average as the centre which is therefore placed closer to the rosette centre than the corners. Since it was seen that this was actually too far in, we considered pushing the ellipses out so that their centres become equidistant with the rhombus's corners. This was done by taking one of the corner points and rotating it to become aligned with the ray through the centre of the rhombus. Figure 10c demonstrates that the errors have been considerably reduced, although the ellipses are no longer in contact with their neighbours. A second approach to the correction is to consider the maximum
error between the true circle forming the interstice and the
straight line approximation. This is LUNES The inscribed ellipses can be considered as being packed into
the lunes, and their centres will lie along the middle of the
luneits so-called medial axis. As a simpler problem we
consider lunes with inscribed circles as shown in Figure 11. This configuration
is reminiscent of the Gothic tracery in rose windows such as
that of the cathedral of Sens [Heilbron 1998]. We determine the
medial axis by finding the locus of the centres of the circles
that are tangent to both arcs of the lune. In our analysis of
the lune its bounding circular arcs are centred at (0,0) and
(0,m) and we can show that the medial axis is an ellipse
with centre Of course, this degree of separation does not occur for a rosette since the most extreme case occurs when there are only three circles (although there is then no rhombus-like interstice to inscribe the ellipse within). The separation between adjacent circle centres is then 3r, which from the graph can be seen to occur just before increased separation of the circles causes large eccentricities. In fact, for the three circle case the aspect ratio of the lunes is exactly 2. INSCRIBED CIRCLES Perhaps the most famous instance of inscribed circles is that of Pappus of Alexandria, who over two thousand years ago described how to inscribe circles into the arbelosa figure shaped like a shoemaker's knife. More recently, Dürer also took up inscribed circles as a means of dividing up a lens in an "orderly manner", as shown in Figure 14. This diagram can be generated in the following manner. Let the two circles forming the lens be centred at with radius R. The inscribed circles lie at with radius ri: ![]() ![]() where ![]() The equations of the circles inscribed in a lune can also be determined, although the process is more laborious (see the Appendix). This enables us to insert circles in the lunes formed by the intersecting circles making up circular rosettes, as shown in figure 15. The rosettes contain two sets of lunes; Figure 15a shows the effect of filling just one set. The circles can be seen as lying on the lunes' radiating arms. Alternatively, moving out along lune from the centre of the rosette the inscribed circles from all the lunes form a circular chain within the rosette. Although the initial circles are small, the radius of the chain is also small. Both increase until the halfway point of the lunes is reached. Thereafter the circles diminish in size while the radius of the chain continues to increase, creating more and more sparse chains. If both sets of lunes are inscribed with circles (Figure 15b) the circles intersect (except at the outermost rings), generating an additional series of lunes. More practical applications of inscribed circles frequently occur in industrial design, often as a means of providing strength while minimising weight or material. A pair of contrasting examples can be seen in eighteenth century bridge design. In the iron bridge at Sunderland shown in Figure 16a the circles can be thought of as primarily additions to strengthen the structure.[3] On the other hand, the inscribed circles in the masonry bridge at Pontypridd (see Figure 16b) are cylinders punched through the spandrels in order to reduce weight, thus appearing as the removal rather than addition of inscribed circles.[4] CONFORMAL MAPPINGS ![]() and its effect is to transform (diagonal) straight lines to equiangular spirals. This enables us to map translational symmetries into rotational symmetries. Figure 17a shows seven columns of circles which are mapped
to the seven concentric rings of ovals in figure 17b. For display
purposes the top half of the columns have been clipped. It should
be noted that the ovals are egg-shaped rather than elliptical
since they contract as they approach the centre of the figure.
The circles in each column lie in the range [0, 2p];
increasing the number of circles increases the radial resolution.
Columns of circles can be added on both sides of Figure 17a extending towards
infinity, increasing the number of concentric rings in Figure 17b. Scaling the x values,
i.e. for a scaling factor s perform Figure 17a also includes interstices that have been added to enclose the circles, and their mapping is included in Figure 17b. To avoid the lines crossing the circles they need to form a lattice of hexagonal elements. The mapped hexagons enclose the ovals, and expand outwards from the centre of the rosette; their two radial lines remain straight while the remaining four lines become (mildly) curvilinear. To form a pattern reminiscent of the rosette with inscribed ellipses we superimpose a grid of rhombuses through the points of contact between adjacent circles (Figure 17c). After the mapping curvilinear rhombuses are formed except that unlike the true circular rosette they cut slivers off the ovals (Figure 17d). Another noticeable difference is that this rosette behaves like a logarithmic rather than circular spiral rosette with the ovals increasing in size while maintaining the same aspect ratio [Williams 1999]. APPENDIX: INSCRIBED CIRCLES TO A LUNE ![]() ![]() ![]() thereafter we can determine the remainder of the sequence of circles as ![]() ![]() ![]() where ![]() ACKNOWLEDGEMENTS NOTES [2] The conjugate diameters AB and CD are drawn where AB>CD. A circle centred on the parallelogram's centre with diameter AB is drawn. A diameter EF of the circle is drawn such that it is perpendicular to AB. The angle ECF is bisected to give the orientation of the ellipse. Its final parameters, the major and minor axes lengths, are calculated as CE±CF. return to text [3] The very first iron bridge ever built (by Abraham Darby III at Coalbrookdale in 1779) is of fairly similar design but only contains a single inscribed circle. return to text [4] The story goes that William Edwards the builder made three attempts to build the bridge. The first bridge was swept away by a flood shortly after completion. Nearing completion the pressure of the heavy work at the spandrels caused the second to spring up in the middle. This lead to the final and successful result which was the longest single span bridge in the UK for half a century. Not only is this considered by many people to be the most beautiful arch bridge in the UK, but it is of significant engineering interest, and has gathered considerable historical and scientific analysis [Hughes et al. 1998]. return to text
Billings, R.W. 1851. The Power of Form applied to Geometric Tracery. Blackwood and Sons. Browning, H.C. 1996. The Principles of Architectural Drawing. Watson-Guptill Publications. Dixon, R. 1991. Mathographics. New York: Dover. To order this book from Amazon.com, click here. Dörri, H. 1965. 100 Great Problems of Elementary Mathematics. New York: Dover. To order this book from Amazon.com, click here. Dürer, Albrect. 1977. The Painter's Manual - A Manual of Measurement of Lines, Areas and Solids by Means of Compass and Ruler. W. L. Strauss, ed. and trans. New York: Abaris Books. Emerson, Ralph Waldo. 1920. Circles. In Essays, 1st series. Dent. Gardner, M. 1965. The superellipse: a curve that lies between the ellipse and the rectangle. Scientific American 21: 222-234. Goodyear, W.H. 1891. The Grammar of the Lotus. Sampson Low and Co. Heilbron, J.L. 1998. Geometry Civilized: History, Culture, and Technique. Oxford: Oxford University Press. Hughes, T.G., G.N. Pande and C. Sicilia. 1998. William Edwards Bridge, Pontypridd. Proceeding of the South Wales Institute of Engineers 106: 8-18. Kappraff, Jay. 1999. The Hidden Pavements of Michelangelo's Lurentian Library. The Mathematical Intelligencer 21, 3 (Summer 1999): 24-29. Kober, H. 1957. Dictionary of Conformal Representations. New York: Dover. Melnick, M. 1994. Manhole Covers. Cambridge, MA: MIT Press. To order this book from Amazon.com, click here. Nicholson, Ben and Jay Kappraff. 1998. The hidden pavement designs of the Laurentian library. Pp. 87-98 in Nexus II: Architecture and Mathematics, Kim Williams, ed. Fucecchio (Florence): Edizioni dell'Erba. To order this book through the NNJ, click here. To order through Amazon.com, click here. Phillips, G. 1839. Rudiments of Curvilinear Design. London. Rawles, B. 1997. Sacred Geometry Design Sourcebook: Universal Dimensional Patterns. Elysian Publishers. Schmelzeisen, K. 1992. Römische Mosaiken der Africa Proconsularis - Studien zu Ornamenten, Datierungen und Werkstätten. P. Lang. Weisstein, Eric W. 1998. CRC Concise Encyclopedia of Mathematics. CRC Press. To order this book from Amazon.com, click here. Williams, Kim. 1997. Italian Pavements: Patterns in Space. Anchorage Press. To order this book through Amazon.com, click here. Williams, Kim. 1999. Spirals and rosettes in architectural ornament. Nexus Network Journal 1:129-138. To order this book through the NNJ, click here.
ABOUT
THE AUTHOR
![]() ![]() Copyright ©2001 Kim Williams |
|