| 
           
                
               
Journal of Lie TheoryVol. 12, No. 1, pp. 137--190 (2002)  | 
| 
       
	
	
	
	
	
       | 
    
Méthode des orbites et formules du caractère pour les représentations tempérées d'un groupe algébrique réel réductif non connexeJean-Yves DuclouxJean-Yves DuclouxUniversité Paris 7 UFR de Mathématiques, UMR 7586 2 place Jussieu, F-75251 Paris Cedex 05, France ducloux@math.jussieu.fr Abstract: Let $G$ be a non-connected reductive real Lie group. In this paper, I parametrize the set of irreductible tempered characters of $G$. Afterwards, I describe these characters by means of some ``Kirillov's formulas'', using the descent method near each elliptic element in $G$. If $G$ is linear and connected, the parameters that I use are ``final basic'' parameters in the sense of Knapp and Zuckerman Full text of the article: 
 Electronic fulltext finalized on: 30 Oct 2001. This page was last modified: 9 Nov 2001. 
© 2001 Heldermann Verlag
  |