International Journal of Mathematics and Mathematical Sciences
Volume 3 (1980), Issue 3, Pages 583-589
doi:10.1155/S0161171280000440
The Heegaard genus of manifolds obtained by surgery on links and knots
Bradd Clark
Department of Mathematics, University of Southwestern Louisiana, Lafayette 70504, Louisiana, USA
Abstract
Let L⊂S3 be a fixed link. It is shown that there exists an upper bound on the Heegaard genus of any manifold obtained by surgery on L. The tunnel number of L, T(L), is defined and used as an upper bound. If K′ is a double of the knot K, it is shown that T(K′)≤T(K)+1. If M is a manifold obtained by surgery on a cable link about K which has n components, it is shown that the Heegaard genus of M is at most T(K)+n+1.