International Journal of Mathematics and Mathematical Sciences
Volume 24 (2000), Issue 4, Pages 265-276
doi:10.1155/S0161171200001605
  
     
          
          Waves due to initial disturbances at the inertial surface in a stratified fluid of finite depth
          
            Prity Ghosh1
            , Uma Basu2
             and B.N. Mandal1
          
          1Physics and Applied Mathematics Unit, Indian Statistical Institute, 203 B. T. Road, Calcutta 700 035, India
          2Department of Applied Mathematics, University of Calcutta, 92 A. P. C. Road, Calcutta 700 009, India
          
          Abstract
This paper is concerned with a Cauchy-Poisson problem in a weakly stratified ocean of uniform finite depth bounded above by an inertial surface (IS). The inertial surface is composed of a thin but uniform distribution of noninteracting materials. The techniques of Laplace transform in time and either Green's integral theorem or Fourier transform have been utilized in the mathematical analysis to obtain the form of the inertial surface in terms of an integral. The asymptotic behaviour of the inertial surface is obtained for large time and distance and displayed graphically. The effect of stratification is discussed.