International Journal of Mathematics and Mathematical Sciences
Volume 23 (2000), Issue 1, Pages 1-9
doi:10.1155/S0161171200001782
Analogues of some fundamental theorems of summability theory
Richard F. Patterson
Department of Mathematics and Computer Science, Duquesne University, 440 College Hall, Pittsburgh 15282, PA, USA
Abstract
In 1911, Steinhaus presented the following theorem: if A is a regular matrix then there exists a sequence of 0's and 1's which is not A-summable. In 1943, R. C. Buck characterized convergent sequences as follows: a sequence x is convergent if and only if there exists a regular matrix A which sums every subsequence of x. In this paper, definitions for subsequences of a double sequence and Pringsheim limit points of a double sequence are introduced. In addition, multidimensional analogues of Steinhaus' and Buck's theorems are proved.