International Journal of Mathematics and Mathematical Sciences
Volume 21 (1998), Issue 4, Pages 767-774
doi:10.1155/S0161171298001070
Abstract
Consider a planar forced system of the following form {dxdt=μ(x,y)+h(t)dydt=−ν(x,y)+g(t), where h(t) and g(t) are 2π-periodic continuous functions, t∈(−∞,∞) and μ(x,y) and ν(x,y) are continuous and satisfy local Lipschitz conditions. In this paper, by using the Poincáre's operator we show that if we assume the condltions, (C1), (C2) and (C3) (see Section 2), then there is at least one 2π-periodic solution. In conclusion, we provide an explicit example which is not in any class of known results.