International Journal of Mathematics and Mathematical Sciences
Volume 2005 (2005), Issue 20, Pages 3199-3212
doi:10.1155/IJMMS.2005.3199
Twistor fibrations giving primitive harmonic maps of finite type
Rui Pacheco
Departamento de Matemática, Universidade da Beira Interior, Rua Marquês d'Ávila e Bolama, Covilhã 6201-001, Portugal
Abstract
Primitive harmonic maps of finite type from a Riemann surface M into a k-symmetric space G/H are obtained by integrating a pair of commuting Hamiltonian vector fields on certain finite-dimensional subspaces of loop algebras. We will clarify and generalize Ohnita and Udagawa's results concerning homogeneous projections p:G/H→G/K, with H⊂K, preserving finite-type property for primitive harmonic maps.