International Journal of Mathematics and Mathematical Sciences
Volume 2005 (2005), Issue 19, Pages 3025-3033
doi:10.1155/IJMMS.2005.3025
The minimum tree for a given zero-entropy period
Esther Barrabés
and David Juher
Departament d'Informàtica i Matemàtica Aplicada, Universitat de Girona, Lluís Santaló s/n, Girona 17071, Spain
Abstract
We answer the following question: given any n∈ℕ, which is the minimum number of endpoints en of a tree admitting a zero-entropy map f with a periodic orbit of period n? We prove that en=s1s2…sk−∑i=2ksisi+1…sk, where n=s1s2…sk is the decomposition of n into a product of primes such that si≤si+1 for 1≤i<k. As a corollary, we get a criterion to decide whether a map f defined on a tree with e endpoints has positive entropy: if f has a periodic orbit of period m with em>e, then the topological entropy of f is positive.