International Journal of Mathematics and Mathematical Sciences
Volume 18 (1995), Issue 4, Pages 705-710
doi:10.1155/S0161171295000901
Abstract
Let f:[0,1]×R2→R be function satisfying Caratheodory's conditions and e(t)∈L1[0,1]. Let η∈(0,1), ξi∈(0,1), ai≥0, i=1,2,…,m−2, with ∑i=1m−2ai=1, 0<ξ1<ξ2<…<ξm−2<1 be given. This paper is concerned with the problem of existence of a solution for the following boundary value problems x″(t)=f(t,x(t),x′(t))+e(t),0<t<1,x′(0)=0,x(1)=x(η),x″(t)=f(t,x(t),x′(t))+e(t),0<t<1,x′(0)=0,x(1)=∑i=1m−2aix(ξi).Conditions for the existence of a solution for the above boundary value problems are given using Leray Schauder Continuation theorem.