International Journal of Mathematics and Mathematical Sciences
Volume 15 (1992), Issue 3, Pages 543-552
doi:10.1155/S016117129200070X
Abstract
In this paper we consider the nonlinear degenerate evolution equation with strong damping,(*) {K(x,t)utt−Δu−Δut+F(u)=0 in Q=Ω×]0,T[u(x,0)=u0, (ku′)(x,0)=0 in Ωu(x,t)=0 on ∑=Γ×]0,T[where K is a function with K(x,t)≥0, K(x,0)=0 and F is a continuous real function satisfying(**) sF(s)≥0, for all s∈R, Ω is a bounded domain of Rn, with smooth boundary Γ. We prove the existence of a global weak solution for (*).