International Journal of Mathematics and Mathematical Sciences
Volume 13 (1990), Issue 4, Pages 799-806
doi:10.1155/S0161171290001107
The effect of a single point on correlation and slope
David L. Farnsworth
Department of Mathematics, Rochester Institute of Technology, Rochester 14623, New York, USA
Abstract
By augmenting a bivariate data set with one point, the correlation coefficient and/or the slope of the regression line can be changed to any prescribed values. For the target value of the correlation coefficient or the slope, the coordinates of the new point are found as a function of certain statistics of the original data. The location of this new point with respect to the original data is investigated.