International Journal of Mathematics and Mathematical Sciences
Volume 12 (1989), Issue 4, Pages 821-822
doi:10.1155/S0161171289001018
Quasi-projective modules and the finite exchange property
Gary F. Birkenmeier
Department of Mathematics, University of Southwestern Louisiana, Lafayette 70504, Louisiana, USA
Abstract
We define a module M to be directly refinable if whenever M=A+B, there exists A¯⊆A and B¯⊆B such that M=A¯⊕B¯ . Theorem. Let M be a quasi-projective module. Then M is directly refinable if and only if M has the finite exchange property.