Fixed Point Theory and Applications
Volume 2008 (2008), Article ID 164537, 18 pages
doi:10.1155/2008/164537
On Rasnoselskii's cone fixed point theorem
Man Kam Kwong
Department of Applied Mathematics, The Hong Kong Polytechnic University, Hunghom, Hong Kong
Abstract
In recent years, the Krasnoselskii fixed point theorem for cone maps and its many generalizations have been successfully applied to establish the existence of multiple solutions in the study of boundary value problems of various types. In the first part of this paper, we revisit the Krasnoselskii theorem, in a more topological perspective, and show that it can be deduced in an elementary way from the classical Brouwer-Schauder theorem. This viewpoint also leads to a topology-theoretic generalization of the theorem. In the second part of the paper, we extend the cone theorem in a different direction using the notion of retraction and show that a stronger form of the often cited Leggett-Williams theorem is a special case of this extension.