Abstract and Applied Analysis
Volume 2 (1997), Issue 3-4, Pages 271-279
doi:10.1155/S1085337597000390
Abstract
The nth order eigenvalue problem: Δnx(t)=(−1)n−kλf(t,x(t)), t∈[0,T],x(0)=x(1)=⋯=x(k−1)=x(T+k+1)=⋯=x(T+n)=0, is considered, where n≥2 and k∈{1,2,…,n−1} are given. Eigenvalues λ are determined for f continuous and the case where the limits f0(t)=limn→0+f(t,u)u and f∞(t)=limn→∞f(t,u)u exist for all t∈[0,T]. Guo's fixed point theorem is applied to operators defined on annular regions in a cone.