Abstract and Applied Analysis
Volume 2 (1997), Issue 3-4, Pages 185-195
doi:10.1155/S108533759700033X
Abstract
We study the following bifurcation problem in any bounded domain Ω in ℝN: {Apu:=−∑i,j=1N∂∂xi[(∑m,k=1Namk(x)∂u∂xm∂u∂xk)p−22aij(x)∂u∂xj]= λg(x)|u|p−2u+f(x,u,λ),u∈W01,p(Ω).. We prove that the principal eigenvalue λ1 of the eigenvalue problem {Apu=λg(x)|u|p−2u,u∈W01,p(Ω), is a bifurcation point of the problem mentioned above.