Abstract and Applied Analysis
Volume 2010 (2010), Article ID 897301, 24 pages
doi:10.1155/2010/897301
  
     
          
          Solution properties of linear descriptor (singular) matrix differential systems of higher order with (non-) consistent initial conditions
          
            Athanasios A. Pantelous1
            , Athanasios D. Karageorgos2
            , Grigoris I. Kalogeropoulos2
             and Kostas G. Arvanitis4
          
          1Department of Mathematical Sciences, University of Liverpool, Peach Street, L69 7ZL Liverpool, UK
          2Department of Mathematics, University of Athens, GR-15784, Greece
          4Department of Natural Resources Management and Agricultural Engineering, Agricultural University of Athens, GR-11855, Greece
          
          Abstract
In some interesting applications in control and system theory, linear descriptor (singular) matrix differential equations of higher order with time-invariant coefficients and (non-) consistent initial conditions have been used. In this paper, we provide a study for the solution properties of a more general class of the Apostol-Kolodner-type equations with consistent and nonconsistent initial conditions.