Abstract and Applied Analysis
Volume 2006 (2006), Article ID 54121, 11 pages
doi:10.1155/AAA/2006/54121
Abstract
We apply a coincidence degree theorem of Mawhin to show the existence of at least one symmetric solution of the nonlinear second-order multipoint boundary value problem u″(t)=f(t,u(t),|u′(t)|),t∈(0,1), u(0)=∑i=1nμiu(ξi),u(1−t)=u(t),t∈[0,1], where 0<ξ1<ξ2<…<ξn≤1/2, ∑i=1nμi=1, f:[0,1]×ℝ2→ℝ with f(t,x,y)=f(1−t,x,y), (t,x,y)∈[0,1]×ℝ2, satisfying the Carathéodory conditions.