Existence of multiple positive solutions of higher order multi-point nonhomogeneous boundary value problem
Dapeng Xie, Hefei Normal University, Hefei, Anhui, P. R. China E. J. Qualitative Theory of Diff. Equ., No. 33. (2010), pp. 1-13.
Yang Liu, Hefei Normal University, Hefei, Anhui, P. R. China
Chuanzhi Bai, Huaiyin Normal University, Huaian, Jiangsu, P. R. China
Communicated by J. R. L. Webb. | Received on 2010-04-08 Appeared on 2010-06-07 |
Abstract: In this paper, by using the Avery and Peterson fixed point theorem, we establish the existence of multiple positive solutions for the following higher order multi-point nonhomogeneous boundary value problem
$ u^{(n)}(t) + f(t,u(t),u'(t),\ldots,u^{(n-2)}(t)) = 0, t\in (0,1)$,
$ u(0)= u'(0)=\cdots=u^{(n-3)}(0)=u^{(n-2)}(0)=0, u^{(n-2)}(1)-\sum_{i=1}^{m} a_i u^{(n-2)}(\xi_i)=\lambda$,
where $n\ge3$ and $m\ge1$ are integers, $0<\xi_1<\xi_2<\cdots<\xi_m<1$ are constants, $\lambda\in [0,\infty)$ is a parameter, $a_i>0$ for $1\le i\le m$ and $\sum_{i=1}^{m} a_i\xi_i<1$, $f(t,u,u',\cdots,u^{(n-2)})\in C([0,1]\times[0,\infty)^{n-1}, [0,\infty))$. We give an example to illustrate our result.
You can download the full text of this paper in DVI, PostScript or PDF format.