Home | Contents | Submissions, editors, etc. | Login | Search | ECP
 Electronic Journal of Probability > Vol. 14 (2009) > Paper 14 open journal systems 


Local Bootstrap Percolation

Janko Gravner, University of California Davis
Alexander E. Holroyd, University of British Columbia, Microsoft Research


Abstract
We study a variant of bootstrap percolation in which growth is restricted to a single active cluster. Initially there is a single active site at the origin, while other sites of Z^2 are independently occupied with small probability p, otherwise empty. Subsequently, an empty site becomes active by contact with 2 or more active neighbors, and an occupied site becomes active if it has an active site within distance 2. We prove that the entire lattice becomes active with probability exp[alpha(p)/p], where alpha(p) is between -pi^2/9 + c sqrt p and pi^2/9 + C sqrt p (-log p)^3. This corrects previous numerical predictions for the scaling of the correction term.


Full text: PDF

Pages: 385-399

Published on: February 9, 2009


Bibliography
  1. J. Adler and U. Lev. Bootstrap percolation: Visualizations and applications. Brazilian J. Phys., 33(3):641--644, 2003. Math. Review number not available.
  2. J. Adler, D. Stauffer, and A. Aharony. Comparison of bootstrap percolation models. J. Phys. A, 22:L297--L301, 1989. Math. Review number not available.
  3. M. Aizenman and J. L. Lebowitz. Metastability effects in bootstrap percolation. J. Phys. A, 21(19):3801--3813, 1988. MR0968311
  4. J. Balogh and B. Bollobas. Sharp thresholds in bootstrap percolation. Physica A, 326(3):305--312, 2003. Math. Review number not available.
  5. N. Cancrini, F. Martinelli, C. Roberto, and C. Toninelli. Kinetically constrained spin models. Probab. Theory Related Fields 140(3-4): 459--504, 2008. MR2365481
  6. P. De Gregorio, A. Lawlor, P. Bradley, and K. A. Dawson. Exact solution of a jamming transition: closed equations for a bootstrap percolation problem. Proc. Natl. Acad. Sci. USA , 102(16):5669--5673 (electronic), 2005. MR2142892
  7. P. De Gregorio, A. Lawlor, and K. A. Dawson. New approach to study mobility in the vicinity of dynamical arrest; exact application to a kinetically constrained model. Europhys. Lett. , 74(2):287--293, 2006. Math. Review number not available.
  8. L. R. Fontes, R. H. Schonmann, and V. Sidoravicius. Stretched exponential fixation in stochastic Ising models at zero temperature. Comm. Math. Phys. , 228(3):495--518, 2002. MR1918786
  9. K. Frobose. Finite-size effects in a cellular automaton for diffusion. J. Statist. Phys. , 55(5-6):1285--1292, 1989. MR1002492
  10. J. Gravner, and A. E. Holroyd. Slow convergence in bootstrap percolation. Ann. Appl. Prob. , 18(3):909--928, 2008. MR2418233
  11. G. R. Grimmett. Percolation . Springer-Verlag, second edition, 1999. MR1707339
  12. A. E. Holroyd. Sharp metastability threshold for two-dimensional bootstrap percolation. Probab. Theory Related Fields , 125(2):195--224, 2003. MR1961342
  13. A. E. Holroyd. The metastability threshold for modified bootstrap percolation in d dimensions. Electron. J. Probab. , 11:no. 17, 418--433 (electronic), 2006. MR2223042
  14. A. E. Holroyd, T. M. Liggett, and D. Romik. Integrals, partitions, and cellular automata. Trans. Amer. Math. Soc., 356(8):3349--3368, 2004. MR2052953
  15. R. H. Schonmann, On the behavior of some cellular automata related to bootstrap percolation. Ann. Probab. , 20(1): 174--193, 1992. MR1143417
  16. D. Stauffer, Work described in Adler and Lev, 2003. Math. Review number not available.
  17. A. C. D. van Enter. Proof of Straley's argument for bootstrap percolation. J. Statist. Phys. , 48(3-4):943--945, 1987. MR0914911
















Research
Support Tool
Capture Cite
View Metadata
Printer Friendly
Context
Author Address
Action
Email Author
Email Others


Home | Contents | Submissions, editors, etc. | Login | Search | ECP

Electronic Journal of Probability. ISSN: 1083-6489