![](images/spacer.gif) |
|
|
| | | | | |
|
|
|
|
|
Local Bootstrap Percolation
|
Janko Gravner, University of California Davis Alexander E. Holroyd, University of British Columbia, Microsoft Research |
Abstract
We study a variant of bootstrap percolation in which growth is restricted
to a single active cluster. Initially there is a single active site at the
origin, while other sites of Z^2 are independently occupied with small
probability p, otherwise empty. Subsequently, an empty site becomes active
by contact with 2 or more active neighbors, and an occupied site becomes
active if it has an active site within distance 2. We prove that the
entire lattice becomes active with probability exp[alpha(p)/p], where
alpha(p) is between -pi^2/9 + c sqrt p and pi^2/9 + C sqrt p (-log p)^3.
This corrects previous numerical predictions for the scaling of the
correction term.
|
Full text: PDF
Pages: 385-399
Published on: February 9, 2009
|
Bibliography
-
J. Adler and U. Lev.
Bootstrap percolation: Visualizations and applications.
Brazilian J. Phys., 33(3):641--644, 2003.
Math. Review number not available.
-
J. Adler, D. Stauffer, and A. Aharony.
Comparison of bootstrap percolation models.
J. Phys. A, 22:L297--L301, 1989.
Math. Review number not available.
-
M. Aizenman and J. L. Lebowitz.
Metastability effects in bootstrap percolation.
J. Phys. A, 21(19):3801--3813, 1988.
MR0968311
-
J. Balogh and B. Bollobas.
Sharp thresholds in bootstrap percolation.
Physica A, 326(3):305--312, 2003.
Math. Review number not available.
-
N. Cancrini, F. Martinelli, C. Roberto, and C. Toninelli.
Kinetically constrained spin models.
Probab. Theory Related Fields 140(3-4): 459--504, 2008.
MR2365481
-
P. De Gregorio, A. Lawlor, P. Bradley, and K. A. Dawson.
Exact solution of a jamming transition: closed equations for a
bootstrap percolation problem.
Proc. Natl. Acad. Sci. USA , 102(16):5669--5673 (electronic),
2005.
MR2142892
-
P. De Gregorio, A. Lawlor, and K. A. Dawson.
New approach to study mobility in the vicinity of dynamical arrest;
exact application to a kinetically constrained model.
Europhys. Lett. , 74(2):287--293, 2006.
Math. Review number not available.
-
L. R. Fontes, R. H. Schonmann, and V. Sidoravicius.
Stretched exponential fixation in stochastic Ising models at zero
temperature.
Comm. Math. Phys. , 228(3):495--518, 2002.
MR1918786
-
K. Frobose.
Finite-size effects in a cellular automaton for diffusion.
J. Statist. Phys. , 55(5-6):1285--1292, 1989.
MR1002492
-
J. Gravner, and A. E. Holroyd.
Slow convergence in bootstrap percolation.
Ann. Appl. Prob. , 18(3):909--928, 2008.
MR2418233
-
G. R. Grimmett.
Percolation .
Springer-Verlag, second edition, 1999.
MR1707339
-
A. E. Holroyd.
Sharp metastability threshold for two-dimensional bootstrap
percolation.
Probab. Theory Related Fields , 125(2):195--224, 2003.
MR1961342
-
A. E. Holroyd.
The metastability threshold for modified bootstrap percolation in
d dimensions.
Electron. J. Probab. , 11:no. 17, 418--433 (electronic), 2006.
MR2223042
-
A. E. Holroyd, T. M. Liggett, and D. Romik.
Integrals, partitions, and cellular automata.
Trans. Amer. Math. Soc., 356(8):3349--3368, 2004.
MR2052953
-
R. H. Schonmann,
On the behavior of some cellular automata related to bootstrap percolation.
Ann. Probab. , 20(1): 174--193, 1992.
MR1143417
-
D. Stauffer,
Work described in Adler and Lev, 2003.
Math. Review number not available.
-
A. C. D. van Enter.
Proof of Straley's argument for bootstrap percolation.
J. Statist. Phys. , 48(3-4):943--945, 1987.
MR0914911
|
|
|
|
|
|
|
| | | | |
Electronic Journal of Probability. ISSN: 1083-6489 |
|