![](images/spacer.gif) |
|
|
| | | | | |
|
|
|
|
|
Small Scale Limit Theorems for the Intersection Local Times of Brownian Motion
|
Peter Mörters, Technische Universität Berlin, Universität Kaiserslautern Narn-Rueih Shieh, National Taiwan University |
Abstract
In this paper we contribute to the investigation of
the fractal nature of the intersection local time measure on the intersection
of independent Brownian paths. We particularly point out the difference
in the small scale behaviour of the intersection local times in three-dimensional
space and in the plane by studying almost sure limit theorems motivated
by the notion of average densities introduced by Bedford and Fisher. We
show that in 3-space the intersection local time measure of two paths has
an average density of order two with respect to the gauge function $varphi(r)=r$,
but in the plane, for the intersection local time measure of p Brownian
paths, the average density of order two fails to converge. The average
density of order three, however, exists for the gauge function $varphi_p(r)=r^2[log(1/r)]^p$.
We also prove refined versions of the above results, which describe more
precisely the fluctuations of the volume of small balls around these gauge
functions by identifying the density distributions, or lacunarity distributions,
of the intersection local times.
|
Full text: PDF
Pages: 1-23
Published on: April 23, 1999
|
Bibliography
- Bedford, T., and Fisher, A.M.,
Analogues of the Lebesgue density theorem for fractal sets of reals
and integers.
Proc. London Math. Soc.(3). 64 (1992) 95--124.
Math. Review 92j:58058
- Dynkin, E.B.,
Additive functionals of several time--reversible Markov processes.
J. Funct. Anal. 42 (1981) 64--101.
Math. Review 82i:60124
- Falconer, K.J.,
Techniques in fractal geometry.
Wiley, Chichester, 1997.
- Falconer, K.J.,
Wavelet transforms and order--two densities of fractals.
Journ. Stat. Phys., 67 (1992) 781--793.
Math. Review 93d:28015
- Falconer, K.J., and Springer, O.B.,
Order--two density of sets and measures with non--integral dimension.
Mathematika. 42 (1995) 1--14.
Math. Review 96i:28003
- Falconer, K.J., and Xiao, Y.,
Average densities of the image and zero set of stable processes.
Stoch. Proc. Appl. 55 (1995) 271--283.
Math. Review 96b:60192
- Geman, D., Horowitz, J., and Rosen, J.,
A local time analysis of intersections of Brownian motion in
the plane.
Ann. Probab. 12 (1984) 86--107.
Math. Review 85m:60071
- Kallenberg, O.,
Random Measures. Akademie-Verlag, Berlin, 1983.
Math. Review 85f:60076
- Le Gall, J.F.,
Sur la saucisse de Wiener et les points multiples du
mouvement brownien.
Ann. Probab. 14 (1986) 1219--1244.
Math. Review 88e:60097
- Le Gall, J.F.,
The exact Hausdorff measure of Brownian multiple points I and II.
In: Seminar on Stochastic Processes 1986, 107--137,
Birkhäuser, Boston 1987 and Seminar on Stochastic Processes 1988,
193--197, Birkhäuser, Boston 1989.
Math. Review 89a:60188
and
Math. Review 90f:60139
- Le Gall, J.F.,
Some properties of planar Brownian motion.
In: Lecture Notes in Math. Vol. 1527, Springer Verlag (New York)
1992.
Math. Review 94b:60001
- Le Gall, J.F., and Taylor, S.J.,
The packing measure of planar Brownian motion.
In: Seminar on Stochastic Processes 1986, 139--147,
Birkhäuser, Boston 1987.
Math. Review 89a:60189
- Leistritz, L.,
Ph.D. Dissertation, University of Jena (1994).
- Marstrand, J.M.,
Order--two density and the strong law of large numbers.
Mathematika. 43 (1996) 1--22.
Math. Review 97f:28022
- Mandelbrot, B.B.,
Measures of fractal lacunarity: Minkowski content and alternatives.
In: Bandt, Graf, Zähle (Eds.), Fractal Geometry and
Stochastics, 15--42, Birkhäuser (Basel) 1995.
Math. Review 97d:28009
- Mattila, P.,
The Geometry of Sets and Measures in Euclidean Spaces.
Cambridge University Press, Cambridge, 1995.
Math. Review 96h:28006
- Mecke, J.,
Stationäre zufällige Maße auf lokalkompakten
abelschen Gruppen.
Zeitschr. f. Wahrsch. verw. Gebiete, 9 (1967) 36--58.
Math. Review 37 #3611
-
Mörters, P.,
Average densities and linear rectifiability of measures.
Mathematika 44 (1997) 313-324.
Math. Review 99c:28014
- Mörters, P.,
Symmetry properties of average densities and tangent measure
distributions of measures on the line.
Adv. Appl. Math. 21 (1998) 146--179.
Math. Review 99e:28015
- Mörters, P.,
The average density of the path of planar Brownian motion.
Stoch. Proc. Appl. 74 (1998) 133--149.
Math. Review 99d:60092
- Mörters, P., and Preiss, D.,
Tangent measure distributions of fractal measures.
Math. Ann. 312 (1998) 53--93.
- Patzschke, N., and Zähle, M.,
Fractional differentiation in the self--affine case
IV. Random measures.
Stoch. Stoch. Rep. 49 (1994) 87--98.
- Ray, D.,
Sojourn times and the exact Hausdorff measure of the sample
paths of planar Brownian motion.
Trans. Amer. Math. Soc. 108 (1963) 436--444.
Math. Review 26 #3129
- Shieh, N.R.,
A growth condition for Brownian intersection points.
In: Trends in Probability and Related Analysis,
Proceedings of SAP'96, 265--272, World Scientific Singapore 1997.
Math. Review 98k:60004
- Taylor, S.J.,
The measure theory of random fractals.
Math. Proc. Camb. Phil. Soc. 100 (1986) 383--486.
Math. Review 87k:60189
- Zähle, U.,
Self-similar random measures I. Notion, carrying Hausdorff
dimension and hyperbolic distribution.
Prob. Th. Rel. Fields. 80 (1988) 79--100.
Math. Review 89m:28014
|
|
|
|
|
|
|
| | | | |
Electronic Journal of Probability. ISSN: 1083-6489 |
|