![](images/spacer.gif) |
|
|
| | | | | |
|
|
|
|
|
Ergodic Properties of Multidimensional Brownian Motion with Rebirth
|
Ilie Grigorescu, University of Miami Min Kang, North Carolina State University |
Abstract
In a bounded open region of the $d$ dimensional space we consider
a Brownian motion which is reborn at a fixed interior point as
soon as it reaches the boundary. The evolution is invariant with
respect to a density equal, modulo a constant, to the Green
function of the Dirichlet Laplacian centered at the point of
return. We calculate the resolvent in closed form, study its
spectral properties and determine explicitly the spectrum in
dimension one. Two proofs of the exponential ergodicity are given,
one using the inverse Laplace transform and properties of analytic
semigroups, and the other based on Doeblin's condition. Both
methods admit generalizations to a wide class of processes.
|
Full text: PDF
Pages: 1299-1322
Published on: October 19, 2007
|
Bibliography
-
Athreya, K., Atuncar, G.S.
Kernel estimation for real-valued Markov chains.
Sankhya: The Indian Journal of Statistics 60,
Series A, Pt.1, (1998) 1--17.
1714774
-
Ben-Ari, I., Pinsky, R.G.
Ergodic behavior of diffusions with
random jumps from the boundary and spectral analysis of an
elliptic operator with nonlocal boundary condition.
Preprint.
Math. Review number not available.
-
Burdzy, K., Hol yst, R., March, P.
A Fleming-Viot particle representation of the Dirichlet Laplacian.
Comm. Math. Phys. 214, no. 3. (2000) 679--703
1800866
-
Down, D., Meyn, P., Tweedie, R. L.
Exponential and uniform ergodicity of Markov processes.
Ann. Probab., Vol. 23, No. 4, (1995) 1671--1691.
1379163
-
Doetsch, G.
Handbuch der Laplace-Transformation. , Band 1.
Birkh"{a}user, Basel. (1950)
0344808
-
Duffie, D.
Dynamic asset pricing theory.
Princeton University Press, Princeton, NJ. (1996)
Math. Review number not available.
-
Evans, L.C.
Partial Differential Equations.
American Mathematical Society, Providence, R.I. (1998)
1625845
-
Feller, W.
Diffusion processes in one dimension.
Trans. Amer. Math. Soc. 77, (1954) 1--31.
0063607
-
Grigorescu, I., Kang, M.
Path collapse for multidimensional Brownian motion with rebirth.
Statist. Probab. Lett. 70, no. 3, (2004) 199--209.
2108086
-
Grigorescu, I., Kang, M.
Brownian Motion on the Figure Eight.
Journ. Theoret. Probab. 15 (3) (2002) 817--844.
1922448
-
Grigorescu, I., Kang, M.
Hydrodynamic Limit for a Fleming-Viot Type System.
Stochastic Process. Appl. 110, no. 1, (2004) 111--143.
2052139
-
Grigorescu, I., Kang, M.
Tagged Particle Limit for a Fleming-Viot Type System.
Electronic Journal of Probability. 11, (2006) 311--331.
2217819
-
It^{o}, K., McKean, H.P.
Diffusion Processes and their Sample Paths.
Springer-Verlag, Berlin. (1965)
0345224
-
Liggett, T.
Interacting Particle Systems.
Springer-Verlag, New York. (1985)
0776231
-
Mandl, P.
Analytical treatment of
one-dimensional Markov processes.
Springer-Verlag, New York. (1968)
0247667
-
Meyn, P., Tweedie, R. L.
Markov Chains and Stochastic Stability.
Springer-Verlag, London. (1993)
1287609
-
Pazy, A.
Semigroups of Linear Operators and Applications to Partial
Differential Equations.
Springer-Verlag, New York. (1983)
0710486
-
Stewart, H.B.
Generation of Analytic Semigroups by Strongly Elliptic Operators.
Trans. Amer. Math. Soc. 199, (1974) 141--162.
0358067
-
Stewart, H.B.
Generation of Analytic Semigroups by Strongly Elliptic
Operators Under General Boundary Conditions.
Trans. Amer. Math. Soc. 259, (1980) 299--310.
0561838
-
Yosida, K.
Functional Analysis.
Second edition. Die Grundlehren der
mathematischen Wissenschaften, Band 123
Springer-Verlag New York Inc., Berlin. (1968)
0239384
|
|
|
|
|
|
|
| | | | |
Electronic Journal of Probability. ISSN: 1083-6489 |
|