Original article at: http://www.math.washington.edu/~ejpecp/viewarticle.php?id=1739

Ergodic Properties of Multidimensional Brownian Motion with Rebirth

Ilie Grigorescu, University of Miami
Min Kang, North Carolina State University

Abstract

In a bounded open region of the $d$ dimensional space we consider a Brownian motion which is reborn at a fixed interior point as soon as it reaches the boundary. The evolution is invariant with respect to a density equal, modulo a constant, to the Green function of the Dirichlet Laplacian centered at the point of return. We calculate the resolvent in closed form, study its spectral properties and determine explicitly the spectrum in dimension one. Two proofs of the exponential ergodicity are given, one using the inverse Laplace transform and properties of analytic semigroups, and the other based on Doeblin's condition. Both methods admit generalizations to a wide class of processes.

Full text: PDF | PostScript




Copyright for articles published in this journal is retained by the authors, with first publication rights granted to the journal. By virtue of their appearance in this open access journal, articles are free to use, with proper attribution, in educational and other non-commercial settings. The authors of papers published in EJP/ECP retain the copyright. We ask for the permission to use the material in any form. We also require that the initial publication in EJP or ECP is acknowledged in any future publication of the same article. Before a paper is published in the Electronic Journal of Probability or Electronic Communications in Probability we must receive a hard-copy of the copyright form. Please mail it to Philippe Carmona Laboratoire Jean Leray UMR 6629 Universite de Nantes, 2, Rue de la Houssinière BP 92208 F-44322 Nantes Cédex 03 France You can also send it by FAX: (33|0) 2 51 12 59 12 to the attention of Philippe Carmona. You can even send a scanned jpeg or pdf of this copyright form to the managing editor ejpecpme@math.univ-nantes.fr. as an attached file. If a paper has several authors, the corresponding author signs the copyright form on behalf of all the authors.

Original article at: http://www.math.washington.edu/~ejpecp/viewarticle.php?id=1739