![](images/spacer.gif) |
|
|
| | | | | |
|
|
|
|
|
From the Lifshitz tail to the quenched survival asymptotics in the trapping problem
|
Ryoki Fukushima, University of Zurich |
Abstract
The survival problem for a diffusing particle moving among random traps is considered. We introduce a simple argument to derive the quenched asymptotics of the survival probability from the Lifshitz tail effect for the associated operator. In particular, the upper bound is proved in fairly general settings and is shown to be sharp in the case of the Brownian motion among Poissonian obstacles. As an application, we derive the quenched asymptotics for the Brownian motion among traps distributed according to a random perturbation of the lattice.
|
Full text: PDF
Pages: 435-446
Published on: October 6, 2009
|
Bibliography
- Antal, Peter. Enlargement of obstacles for the simple random walk.
Ann. Probab. 23 (1995), no. 3, 1061--1101. MR1349162 (96m:60158)
- Biskup, Marek; König, Wolfgang. Long-time tails in the parabolic Anderson model with bounded
potential.
Ann. Probab. 29 (2001), no. 2, 636--682. MR1849173 (2002j:60038)
- Carmona, René; Lacroix, Jean. Spectral theory of random Schrödinger operators.
Probability and its Applications. Birkhäuser Boston, Inc., Boston, MA, 1990. xxvi+587 pp. ISBN: 0-8176-3486-X MR1102675 (92k:47143)
- den Hollander, Frank; Weiss, George H.
Aspects of Trapping in Transport Processes.
In Contemporary Problems in Statistical
Physics, 147--203. Society for Industrial and Applied Mathematics,
1994. Math. Review number not available.
- Donsker, M. D.; Varadhan, S. R. S. Asymptotics for the Wiener sausage.
Comm. Pure Appl. Math. 28 (1975), no. 4, 525--565. MR0397901 (53 #1757a)
- Fukushima, Masatoshi. On the spectral distribution of a disordered system and the range of a
random walk.
Osaka J. Math. 11 (1974), 73--85. MR0353462 (50 #5945)
- Fukushima, Ryoki. Brownian survival and Lifshitz tail in perturbed lattice disorder.
J. Funct. Anal. 256 (2009), no. 9, 2867--2893. MR2502426
-
Fukushima, Ryoki; Ueki, Naomasa.
Classical and quantum behavior of the integrated density of states
for a randomly perturbed lattice.
Kyoto University Preprint Series, Kyoto-Math 2009-10, submitted, 2009.
Math. Review number not available.
- Havlin, Shlomo; Ben-Avraham, Daniel.
Diffusion in disordered media.
Adv. Phys., 36(6):695--798, 1987. Math. Review number not available.
- Kasahara, Yuji. Tauberian theorems of exponential type.
J. Math. Kyoto Univ. 18 (1978), no. 2, 209--219. MR0501841 (80g:40008)
- Lifshitz, I. M. Energy spectrum structure and quantum states of disordered condensed
systems.
Uspehi Fiz. Nauk 83 617--663 (Russian); translated as Soviet Physics Uspekhi 7 1965 549--573. MR0181368 (31 #5597)
- Nakao, Shintaro. On the spectral distribution of the Schrödinger operator with random
potential.
Japan. J. Math. (N.S.) 3 (1977), no. 1, 111--139. MR0651925 (58 #31419)
- Pastur, L. A. The behavior of certain Wiener integrals as $t rightarrow infty$ and the density of states of Schrödinger equations with random
potential.
(Russian) Teoret. Mat. Fiz. 32 (1977), no. 1, 88--95. MR0449356 (56 #7661)
- Reed, Michael; Simon, Barry. Methods of modern mathematical physics. I.
Functional analysis.
Second edition.
Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New
York, 1980. xv+400 pp. ISBN: 0-12-585050-6 MR0751959 (85e:46002)
- Romerio, M.; Wreszinski, W. On the Lifschitz singularity and the tailing in the density of states
for random lattice systems.
J. Statist. Phys. 21 (1979), no. 2, 169--179. MR0541078 (80h:82008)
- Seneta, Eugene. Regularly varying functions.
Lecture Notes in Mathematics, Vol. 508. Springer-Verlag, Berlin-New York, 1976. v+112 pp. MR0453936 (56 #12189)
- Simon, Barry. Schrödinger semigroups.
Bull. Amer. Math. Soc. (N.S.) 7 (1982), no. 3, 447--526. MR0670130 (86b:81001a)
- Sznitman, Alain-Sol. Brownian asymptotics in a Poissonian environment.
Probab. Theory Related Fields 95 (1993), no. 2, 155--174. MR1214085 (94c:60173)
- Sznitman, Alain-Sol. Brownian motion, obstacles and random media.
Springer Monographs in Mathematics. Springer-Verlag, Berlin, 1998. xvi+353 pp. ISBN: 3-540-64554-3 MR1717054 (2001h:60147)
- van den Berg, M. A Gaussian lower bound for the Dirichlet heat kernel.
Bull. London Math. Soc. 24 (1992), no. 5, 475--477. MR1173944 (93k:35116)
|
|
|
|
|
|
|
| | | | |
Electronic Communications in Probability. ISSN: 1083-589X |
|