Original article at: http://www.math.washington.edu/~ejpecp/ECP/viewarticle.php?id=2136

From the Lifshitz tail to the quenched survival asymptotics in the trapping problem

Ryoki Fukushima, University of Zurich

Abstract

The survival problem for a diffusing particle moving among random traps is considered. We introduce a simple argument to derive the quenched asymptotics of the survival probability from the Lifshitz tail effect for the associated operator. In particular, the upper bound is proved in fairly general settings and is shown to be sharp in the case of the Brownian motion among Poissonian obstacles. As an application, we derive the quenched asymptotics for the Brownian motion among traps distributed according to a random perturbation of the lattice.

Full text: PDF | PostScript




Copyright for articles published in this journal is retained by the authors, with first publication rights granted to the journal. By virtue of their appearance in this open access journal, articles are free to use, with proper attribution, in educational and other non-commercial settings. The authors of papers published in EJP/ECP retain the copyright. We ask for the permission to use the material in any form. We also require that the initial publication in EJP or ECP is acknowledged in any future publication of the same article. Before a paper is published in the Electronic Journal of Probability or Electronic Communications in Probability we must receive a hard-copy of the copyright form. Please mail it to Philippe Carmona Laboratoire Jean Leray UMR 6629 Universite de Nantes, 2, Rue de la Houssinière BP 92208 F-44322 Nantes Cédex 03 France You can also send it by FAX: (33|0) 2 51 12 59 12 to the attention of Philippe Carmona. The preferred way is to send a scanned (jpeg or pdf) copy of the signed copyright form to the managing editor Philippe Carmona at ejpecpme@math.univ-nantes.fr. If a paper has several authors, the corresponding author signs the copyright form on behalf of all the authors.

Original article at: http://www.math.washington.edu/~ejpecp/ECP/viewarticle.php?id=2136