Bulletin, Classe des Sciences Mathématiques et Naturelles, Sciences mathématiques Académie Serbe des Sciences et des Arts, Beograd Vol. CXXVII, No. 28, pp. 31-40 (2003) |
|
On the coefficients of the Laplacian characteristic polynomial of treesI. Gutman and Ljiljana PavlovicIFaculty of Science, University of Kragujevac, P. O. Box 60, 34000 Kragujevac, Serbia and MontenegroAbstract: Let the Laplacian characteristic polynomial of an $n$-vertex tree $T$ be of the form $\psi(T,\lambda) = \sum\limits_{k=0}^n (-1)^{n-k}\,c_k(T)\,\lambda^k$\,. Then, as well known, $c_0(T)=0$ and $c_1(T)=n$\,. If $T$ differs from the star ($S_n$) and the path ($P_n$), which requires $n \geq 5$\,, then $c_2(S_n) < c_2(T) < c_2(P_n)$ and $c_3(S_n) < c_3(T) < c_3(P_n)$\,. If $n=4$\,, then $c_3(S_n)=c_3(P_n)$\,. Keywords: Laplacian spectrum, Laplacian characteristic polynomial, Trees, Distance (in graph), Wiener number Classification (MSC2000): 05C05, 05C12, 05C50 Full text of the article:
Electronic version published on: 17 Dec 2003. This page was last modified: 17 Dec 2003.
© 2003 Mathematical Institute of the Serbian Academy of Science and Arts
|