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Spread-out oriented percolation

and related models above
the upper critical dimension:

induction and superprocesses

Remco van der Hofstad

Abstract. In these notes we give an extensive survey of the recent progress
for critical spread-out oriented percolation above the upper critical dimen-
sion. We describe the main tools, which are the lace expansion and the
inductive method. The lace expansion gives a recursion relation for the
two-point functions involved, and the inductive method gives an induc-
tive analysis of the arising recursion relation. These results apply also to
self-avoiding walk. We further describe the scaling results for the oriented
percolation higher-point functions, and compare these to their branching
random walk analogues. Finally, we discuss the relations between scaling
limits of critical branching models to super-processes, which are random
measures evolving diffusively in time.
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1 Introduction

Random walks and branching random walks are paradigm models appear-
ing in various applications. For example, random walks can be used to
model the irregular motion of moving particles, whereas branching ran-
dom walk are the simplest model for populations where individuals move
and produce offspring of their own. In many cases, however, phenomena
are more realistically described by adding a kind of interaction. For ex-
ample, for a linear polymer, the different building blocks of the polymer
are repelling each other, due to the repellent forces between the building
blocks. Such a linear polymer of size n is therefore more realistically mod-
eled by a self-avoiding walk, which is an n-step random walk conditioned
on not having any self-intersections. Likewise, when one tries to model the
spread of a disease in a static population, branching random walk is too
crude, since in branching random walk, an individual who is infected from
various sources is counted more than once. For oriented percolation, this
overcounting does not take place, and it therefore makes a more realistic
model for the spread of a disease in a static population. Random walk and
branching random walk can often be seen as the mean-field version of the
interacting models, for which the interaction is not present. Needless to
say, self-avoiding walk and oriented percolation are still caricatures of the
intricate reality of polymers and the spread of diseases, respectively, but
already these relatively simple changes to the random walk and branching
random walk models make the investigation very difficult indeed.

In many cases, models which can be viewed as interacting versions of
random walks and/or branching random walks are expected to have an
upper critical dimension, above which the scaling ceases to depend on the
dimension. For example, for self-avoiding walk, it was long conjectured
in the physics community that above 4 dimensions, the scaling limit is
Brownian motion, and thus the self-avoiding walk is a small perturbation
of the simpler random walk model. In this paper, we describe the lace
expansion, which has been quite successful in proving that such an upper
critical dimension exists, and that the scaling limit is the same as the
scaling limit of the mean-field model above the so-called upper critical
dimension. This method further allows to prove conjectures long predicted
in the physics community, such as the existence of critical exponents, which
summarize the systems close to criticality, and universality, which states
that critical exponents and scaling limits should not depend on the precise
details of the model. These two predictions from physics have proved to be
extremely hard to establish rigorously, so that the cases above the critical
dimension are important examples suggesting a more general validity of
these physics predictions.

The goal of this survey is to review recent results on the application of
the lace expansion. A much more substantial survey has appeared in the
Saint-Flour notes of Gordon Slade [62], which covers the entire history of
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the method, as well as most of the recent applications, among others to
random graphs. Therefore, we have decided to focus on two topics which
do not appear in full detail in [62]. The first main topic of this paper is
the inductive method, appearing for the first time in [33]. The inductive
method allows to prove Gaussian scaling for two-point functions, which
describe linear structures evolving in time, such as paths in percolation
clusters and self-avoiding walks, using induction in time. The inductive
method can be used to show that the endpoints of these paths scale to
normal distributions, just as for Brownian motion, and suggests scaling to
Brownian motion. Naturally, Brownian motion arises as the scaling limit of
random walk, the simplest imaginable model of a particle moving randomly
in time. The second first main topic of this paper is the application of the
results obtained by the inductive method to prove convergence to super-
processes. Super-processes are measure-valued diffusions, and describe the
diffusive behaviour of the measures describing the location of particles as
time evolves. The main example of a super-process is super-Brownian mo-
tion, which arises as the scaling limits of critical branching random walk.

Naturally, in this survey, we cannot cover the wide variety of results
obtained using the lace expansion. For a more detailed account of the
history of the problem, as well as for more extensive references to the
literature, especially the papers prior to 1998, we refer to [62].

This survey consists of three main parts. In Section 2, we state the results
for two-point functions and describe the inductive method, in Section 3,
we describe the results and proofs for branching structures, and in Section
4, we describe the connection to super-processes.

2 Two-point functions

2.1 Introduction of the models

In this section, we formulate the models, and state the main results on
the two-point functions, which describe point-to-point connections in the
model. We start with the basic example of spread-out random walks, and
then define the spread-out self-avoiding walk and oriented percolation mod-
els.

2.1.1 Spread-out random walk

Before moving to self-avoiding walk and oriented percolation, the main
statistical mechanical models to be studied in this paper, we describe the
simpler situation of random walks. This section allows to introduce nota-
tion, and to derive results for random walks that we will later prove for
self-avoiding walk and oriented percolation.
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We define the random walk two-point function by

pn(x) =
∑

ω∈Wn(x)

W (ω), (2.1.1)

where Wn(x) denotes the set of n-step random walk paths from 0 to x and

W (ω) =
n∏

i=1

D(ω(i)− ω(i− 1)) (2.1.2)

is the weight of the path ω = (ω(0), . . . , ω(n)). It is natural to assume that
D is normalised, i.e., that

∑

x∈Zd

D(x) = 1. (2.1.3)

Then, (2.1.1) is nothing but the probability that a random walker with step
distribution y 7→ D(y) is at x ∈ Zd at time n. We note that pn satisfies
the recursion relation

pn+1(x) =
∑

ω∈Wn+1(x)

∑

y∈Zd:ω(1)=y

W (ω) (2.1.4)

=
∑

y∈Zd

D(y)
∑

ω′∈Wn(x−y)

W (ω′) = (D ∗ pn)(x),

where, for two summable functions f, g : Zd → R, we define f ∗ g to be the
convolution of f and g, i.e.,

(f ∗ g)(x) =
∑

y∈Zd

f(y)g(x− y). (2.1.5)

Clearly, we can solve (2.1.4) to obtain

pn(x) = D∗n(x), (2.1.6)

where D∗n is the n-fold convolution of D. In this paper, we will describe
recurrence relations that are similar in spirit to (2.1.4), but which are sub-
stantially more involved, so that the above simple solution is no longer
feasible. Therefore, we reside to stronger analytical means to study the
asymptotics of such recurrence relations.

The function D is assumed to be invariant under the symmetries of
Zd (permutation of coordinates and replacement of any coordinate by its
negative). We further assume that

σ2 =
∑

x∈Zd

|x|2D(x) <∞, (2.1.7)
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where | · | denotes the Euclidian distance in Zd. It is well know that un-
der the above conditions, the endpoint ω(n), which has probability mass
function pn, scales as a Gaussian random variable. More precisely, we have
that the random variable

ω(n)√
σ2n

, (2.1.8)

converges in distribution to a vector of d independent standard normal
random variables. One way of showing this is by investigating the Fourier
transform, which, for a summable function f : Zd → R, is defined by

f̂(k) =
∑

x∈Zd

eik·xf(x). (2.1.9)

We note that the characteristic function of ω(n), the position of the random
walker after n-steps, is equal to

E[eik·ω(n)] = p̂n(k) = D̂(k)n, (2.1.10)

where E denotes the expectation with respect to the law of the random
walk ω. The characteristic function of the rescaled position of the random
walker after n steps given in (2.1.8) is equal to

p̂n

( k√
σ2n

)
. (2.1.11)

For k small, when D has 2 + 2ε moments for some ε > 0, i.e., when
∑

x∈Zd

|x|2+2εD(x) <∞, (2.1.12)

then

D̂(k) = 1− σ2 |k|2
2d

+O(|k|2+2ε). (2.1.13)

Therefore, we obtain that

p̂n

( k√
σ2n

)
=

[
D̂

( k√
σ2n

)]n =
[
1− |k|2

2dn
+O(|k|2+2εn−(1+ε))

]n

= e−
|k|2
2d +O(|k|2+2εn−ε).

(2.1.14)

Furthermore, we obtain that
∑

x∈Zd

|x|2pn(x) =
∑

x∈Zd

|x|2D∗n(x) = n
∑

x∈Zd

|x|2D(x) = nσ2, (2.1.15)

since
∑

x∈Zd xD(x) = 0 by symmetry, and the variance of a sum of n
i.i.d. random variables is n times the variance of each of the random vari-
ables. Finally, a local central limit theorem can be used to show that,
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for x ∈ Rd, the rescaled transition probability x 7→ pn

(d x√
n
e), where

dxe = (dx1e, . . . , dxde), is close to n−d/2 times the density of a normal
random variable with variance σ2. In particular, this shows that there
exist constants 0 < C1 < C2 <∞ such that for all n ≥ 1

C1σ
−dn−d/2 ≤ sup

x∈Zd

pn(x) ≤ C2σ
−dn−d/2. (2.1.16)

Note that the scaling behaviour described above is insensitive to the precise
details of the model, in the sense that scaling and asymptotic behaviour
are independent of the precise transition law D, and only depend on the
symmetry of the steps with respect to rotations by 90 degrees and the
fact that the second moment exists. We conclude that random walk shows
universal behaviour. This is a weak form of universality. A stronger version
of universality would say that also when the steps are weakly dependent,
the scaling limit is Brownian motion. There are many examples of such
universal results known for weakly-interacting random walks. Examples are
m-dependent random walks, where the steps are an m-dependent process,
i.e., a process ω = (ω(n))∞n=0 where, for every k ∈ N and conditionally on
(ω(n))k+m

n=k+1, the processes (ω(n))k
n=0 and (ω(n))∞n=k+m+1 are independent.

The main goal of this paper is to survey similar results for interact-
ing models, where the simple recurrence relation (2.1.4) is replaced by a
more intricate recurrence relation. An example of such a model is the
self-avoiding walk, which is discussed in more detail in Section 2.1.2. The
interaction for self-avoiding walk is not weak, so that different scaling can
occur. For such models, it will be technically convenient to deal with cases
where the interaction is not too strong. This can be achieved by making the
range of the random walk step-distribution large, i.e., by making the walk
spread-out. For example, for self-avoiding walk, if the range of the walk
increases, then the self-avoidance constraint deceases in severity. However,
spread-out self-avoiding walks are expected to be in the same universal-
ity class as nearest-neighbour self-avoiding walks, so that the difficulties in
dealing with the interaction persist.

We now formulate the precise assumption on the random walk transition
function D. We assume that D obeys the restrictions formulated in (2.1.7)
and (2.1.12) above, and to obey Assumption D in [40, Section 1.2]. This
assumption entails that there is a constant C such that, for all L ≥ 1,

‖D‖∞ ≤ CL−d, σ2 =
∑

x∈Zd

|x|2D(x) ≤ CL2, (2.1.17)

and that there exist constants η, c1, c2 > 0 such that

[c1(Lk)2]∧η ≤ 1−D̂(k) ≤ [c2(Lk)2]∧η, D̂(k) > −1+η (k ∈ [−π, π]d).
(2.1.18)
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A simple and basic example is

D(x) =

{
(2L+ 1)−d if ‖x‖∞ ≤ L,

0 otherwise.
(2.1.19)

In this example, the random walker makes a uniform step inside the d-
dimensional cube of width 2L+ 1.

2.1.2 Self-avoiding walk

An excellent introduction to self-avoiding walks can be found in [49], to
which we refer for more details. We begin by introducing the spread-out
self-avoiding walk two-point function. A path ω = (ω(i))n

i=0 is called self-
avoiding when ω(i) 6= ω(j) for all 0 ≤ i < j ≤ n. For x ∈ Zd, we set
c0(x) = δ0,x and, for n ≥ 1, we define

cn(x) =
∑

ω∈Cn(x)

W (ω), (2.1.20)

where Cn(x) denotes the set of n-step self-avoiding walk paths from 0 to
x and we recall the definition of W (ω) in (2.1.2). The two-point function
cn(x) is the probability that the walker ends at x at time n, without ever
revisiting a previously visited site. The self-avoidance constraint is severe,
and despite the simple definition of the model, many facets of self-avoiding
walks are still not mathematically understood.

The Fourier transform of (2.1.20) is written

ĉn(k) =
∑

x∈Zd

cn(x)eik·x, k ∈ (−π, π]d, (2.1.21)

and we use the abbreviation

cn = ĉn(0) =
∑

x∈Zd

cn(x). (2.1.22)

Self-avoiding walks are a caricature model of polymers in a good solvent,
where the self-avoidance constraint models the repulsive forces between
the building blocks of the polymer. Self-avoiding walks have attracted
a tremendous amount of attention in the literature, both by theoretical
physicists with non-rigorous means, as well as by mathematicians with
rigorous means.

If we define a path measure Qn by

Qn(ω) =
1
cn
W (ω), (2.1.23)

for all n-step self-avoiding walks, and Qn(ω) = 0 otherwise, then the
law of (ω(1), . . . , ω(n)) is not consistent, in the sense that the law of
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(ω(1), . . . , ω(n)) under Qn+1 is not the same as the law of (ω(1), . . . , ω(n))
under Qn. Therefore, we cannot think of (ω(1), . . . , ω(n)) under Qn as re-
ferring to a stochastic process evolving in time.

In theoretical physics, it is common to describe the scaling behaviour in
terms of critical exponents, the existence of which is highly non-trivial. A
prediction commonly made in theoretical physics is the following:

Conjecture 2.1. There exist γ, ν such that

cn ∼ Anγ−1µn,
1
cn

∑
x

|x|2cn(x) ∼ Dn2ν (n→∞), (2.1.24)

where γ = γ(d), ν = ν(d) are critical exponents that are believed to be
independent of L and

ν = 1 γ = 1 d = 1,
= 3

4 = 43
32 d = 2,

= 0.588 . . . = 1.162 . . . d = 3,
= 1

2 = 1 d ≥ 4.

(2.1.25)

For d = 4, it is believed that there exist logarithmic corrections.

The fact that the critical exponents are independent of the details of
the model (such as the range L) is called universality. Universality is one
of the basic predictions in physics and is expected to hold for most of
the paradigm models in statistical mechanics, but mathematical proofs for
universality are scarce.

Note that for random walk, the scaling in (2.1.25) holds, with critical
exponents νRW = 1

2 and γRW = 1. Therefore, the critical exponents for
random walk are universal, and it can be expected that the same holds for
related physical models such as the self-avoiding walk. Interestingly, the
critical exponents ν and γ for self-avoiding walk are expected to depend on
the dimension d. However, when d ≥ 4, the critical exponents no longer
depend on the dimension and take on the values for random walk. In
physics, this is termed that the upper critical dimension equals 4 and the
mean-field model is random walk. Logarithmic corrections are commonly
assumed to exist in the critical dimension. For example, in d = 4, it is
expected that cn ∼ A(log n)1/4µn.

Flory [20], see also [49, Chapter 2], has given a very simple argument
that suggests that ν = 3

d+2 when d ≤ 4 and ν = 1
2 when d ≥ 4. Despite

the simplicity of the argument, the value obtained in the heuristic seems
to be the predicted value except for the case where d = 3. See also [32] for
a slightly improved version of the heuristic applying to dimension d = 2,
which is based on scaling for the one-dimensional case and crude heuristics.

Mathematical proofs for Conjecture 2.1 only exist in some cases. Even
though nearest-neighbour self-avoiding walk in dimension 1 is rather trivial,
and obeys (2.1.24) with cn = 2 and 1

cn

∑
x∈Z |x|2cn(x) = n2, spread-out
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self-avoiding walk is highly non-trivial even in dimension one. In [45], it
is shown that ν(1) = 1, γ(1) = 1 for a general class of random walk step
distributions D, thereby showing universality.

There has been recent progress in the understanding of two-dimensional
self-avoiding walk, using the notion of conformal invariance. The values
of the critical exponents have been predicted by Nienhuis [52], and these
values have been confirmed by Monte Carlo simulations. There is also a
mathematical explanation for these remarkable values by Werner, Lawler
and Schramm. Roughly speaking, it can be expected that important ques-
tions for the scaling behavior of two-dimensional self-avoiding walk could
be answered if we would know that the scaling limit of self-avoiding walk
is conformally invariant. However, even a proper formulation of the latter
is not obvious. See [46] for a discussion on the links between Stochas-
tic/Schramm Loewner Evolution and self-avoiding walks, where, among
other things, it is shown that if the scaling limit exists and is conformally
invariant, then it is SLE 8

3
. See also the review paper [64] and the references

therein.
Any understanding of the three-dimensional case is lacking, as even the

physics literature does not offer any acceptable heuristics. There are even
no conjectures what the values of the critical exponents are, even though
there are estimates obtained using substantial Monte Carlo simulations.

An important property used to study self-avoiding walks is its self-
repellence. We give an example of its use by showing that if γ exists,
then γ ≥ 1. This argument is based upon sub-multiplicativity, and goes as
follows. We note that the set of n+m step self-avoiding walks is a subset
of the set of concatenations of n and m step self-avoiding walks. Indeed,
the set of n +m step self-avoiding walks is the set of concatenations of n
and m step self-avoiding walks, where the two self-avoiding walks are also
mutually avoiding. This shows that

cn+m ≤ cncm. (2.1.26)

As a result, the sequence log cn is subadditive, so that the limit

lim
n→∞

1
n

log cn ≡ log µ (2.1.27)

exists. Moreover,

log µ = inf
n≥1

1
n

log cn. (2.1.28)

As a consequence, we obtain that for all n ≥ 1,

cn ≥ µn, (2.1.29)

so that if the critical exponent γ exists, then it must satisfy γ ≥ 1. The
above bound is a mean-field bound, and similar bounds exist for related
percolation models.
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The main focus of this paper is the study of the models above the upper-
critical dimension. In this case, the existence of the critical exponents ν
and γ can be shown. A much stronger result is formulated in the following
theorem:

Theorem 2.1. Let d > 4 and δ ∈ (0, ε∧1∧ d−4
2 ), where ε is as in (2.1.12).

There is an L0 such that for L ≥ L0 there exist positive constants v, µ,
and A (all depending on d and L), and C1, C2 (depending on d but not L)
such that the following statements hold as n→∞:
(a) For all k ∈ Rd with |k|2 bounded by a constant,

ĉn(k(σ2vn)−1/2) = Aµne−|k|
2/2d

[
1+O(n−(d−4)/2)+O(|k|2n−δ)

]
. (2.1.30)

(b)
1
cn

∑

x∈Zd

|x|2 cn(x) = σ2vn
[
1 +O(n−δ)

]
. (2.1.31)

(c)
C1µ

nL−dn−d/2 ≤ sup
x∈Zd

cn(x) ≤ C2µ
nL−dn−d/2. (2.1.32)

Theorem 2.1 proves that Conjecture 2.1 indeed holds, with ν = 1
2 , γ = 1,

just as for random walk. Equations (2.1.30)–(2.1.31) also provide error es-
timates. Furthermore, (2.1.30) proves that the endpoint scales to a normal
distribution, while (2.1.32) is a statement reminiscent to (2.1.16), when we
note that σ is proportional to L. Therefore, we can summarize Theorem
2.1 by saying that self-avoiding walk above 4 dimensions is a small pertur-
bation of random walk. Note that the independence of γ and ν on L prove
a weak form of universality, even though universality is expected to hold
much more generally indeed.

Theorem 2.1 was proved in [42], using the inductive method in [40]. This
proof will be described in some detail below. A version of Theorem 2.1 with
somewhat weaker error bounds was first proved in [49, Theorem 6.1.1] using
generating functions. See also Section 2.6.1 below for an explanation of this
method.

2.1.3 The spread-out oriented percolation two-point function

We now introduce the second key model to be studied in this paper,
namely, spread-out oriented percolation. Percolation models have attracted
a tremendous amount of attention in the statistical mechanics community,
since they are very simple to formulate, yet share interesting characteris-
tics such as phase transitions, predictions of existence of critical exponents,
and universal behaviour with other common models in statistical mechan-
ics. In this section, we study oriented percolation, which is a percolation
model that evolves in time.
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Let Z+ = {n ∈ Z : n ≥ 0}. Consider the graph with vertices Zd × Z+

and with directed bonds ((x, n), (y, n + 1)), for n ∈ Z+ and x, y ∈ Zd.
Let D be a fixed function D : Zd → [0, 1], satisfying

∑
x∈Zd D(x) = 1. Let

p ∈ [0, ‖D‖−1
∞ ], where ‖·‖∞ denotes the supremum norm, so that pD(w) ≤ 1

for all w ∈ Zd. We associate to each directed bond ((x, n), (y, n + 1)) an
independent random variable taking the value 1 with probability pD(y−x)
and the value 0 with probability 1 − pD(y − x). We say that a bond is
occupied when the corresponding random variable is 1 and vacant when it
is 0. Note that p is not a probability. Rather, p is the average number of
occupied bonds from a given vertex. The joint probability distribution of
the bond variables will be denoted by Pp and the corresponding expectation
by Ep.

In the example (2.1.19), the bonds are given by ((x, n), (y, n + 1)) with
‖x − y‖∞ ≤ L, and a bond is occupied with probability p(2L + 1)−d.
Assumption D also allows for certain infinite range models.

One can think of oriented percolation as a caricature model to describe
the evolution of a disease in a static population. In this description, we start
with a single infected individual at time 0 located at the origin in Zd. This
individual can infect other individuals which are located close to him/her
with certain probabilities that are indicated by pD, and every individual
recuperates from the disease with probability 1 − pD(0). Alternatively,
one can think of oriented percolation as a version of percolation with a
preferred direction.

We now introduce some notation. We say that (x, n) is connected to
(y,m), and write (x, n) −→ (y,m), if there is an oriented path from (x, n)
to (y,m) consisting of occupied bonds. Note that this is only possible when
m ≥ n. By convention, (x, n) is connected to itself. We write C(x, n) =
{(y,m) : (x, n) −→ (y,m)} to denote the forward cluster of (x, n).

Oriented percolation has a phase transition when p increases. Indeed,
with

θ(p) = Pp(|C(0, 0)| = ∞), (2.1.33)

there exists a pc such that

θ(p) = 0 for p < pc, θ(p) > 0 for p > pc. (2.1.34)

Moreover, it is shown in [2] that critical oriented percolation does not
percolate, i.e., θ(pc) = 0.

We define the spread-out oriented percolation two-point function by

τn(x) = Pp((0, 0) −→ (x, n)). (2.1.35)

The two-point function describes path in percolation clusters, and has its
most intricate behaviour when p = pc, i.e., for critical oriented percolation.
Indeed, when p < pc, it can be shown that

∑
x∈Zd τn(x) decays exponen-

tially in n when n→∞, while for p > pc,
∑

x∈Zd τn(x) grows proportionally
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to nd. The above behaviour is similar in all dimensions d. At criticality,
scaling is expected to depend sensitively on the dimension, as is the case
for self-avoiding walk as formulated in Conjecture 2.1.

The main result in this section is the following theorem, which is proved
in [40]:

Theorem 2.2. Let d > 4, p = pc, and δ ∈ (0, 1 ∧ ε ∧ d−4
2 ). There is an

L0 = L0(d) such that for L ≥ L0 there exist positive constants v and A
(depending on d and L), and C1, C2 (depending only on d), such that the
following statements hold as n→∞:
(a)

τ̂n(k/
√
vσ2n) = Ae−

|k|2
2d [1 +O(|k|2n−δ) +O(n−(d−4)/2)], (2.1.36)

(b)
1

τ̂n(0)

∑
x

|x|2τn(x) = vσ2n[1 +O(n−δ)], (2.1.37)

(c)
C1L

−dn−d/2 ≤ sup
x∈Zd

τn(x) ≤ C2L
−dn−d/2, (2.1.38)

with the error estimate in (a) uniform in k ∈ Rd with |k|2(log n)−1 suffi-
ciently small.

Note that Theorem 2.2 proves a similar result for the critical spread-out
oriented percolation two-point function as for the spread-out self-avoiding
walk two-point function in Theorem 2.1. We can interpret Theorem 2.2 by
saying that paths in critical oriented percolation clusters are like random
walk paths.

Parts (a) and (b) of Theorem 2.2 were first proved by Nguyen and Yang
[51] using generating function methods, with somewhat weaker error esti-
mates.

2.2 The lace expansion for two-point functions

The proof of Theorems 2.1 and 2.2 make use of an expansion technique
called the lace expansion, which proves a recurrence relation for the two-
point functions of self-avoiding walk and oriented percolation. The lace
expansion has been used to study several statistical mechanical models
above the upper critical dimension, and we will describe some related re-
sults below.

Any successful application of the lace expansion consists of three main
steps:

1. The derivation of the expansion.

2. The bounds on the expansion coefficients.
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3. The analysis of the recurrence relation.

The expansions for self-avoiding walk and oriented percolation will be de-
scribed in this section, the bounds on the coefficients in Section 2.3, and
the analysis of the recurrence relation in Section 2.4. As we will explain in
more detail below, the three main steps depend sensitively on each other.
There are many models for which we can derive some form of an expansion,
but since bounds on the coefficients are missing, no results can be obtained.
Examples of such cases are self-avoiding walk and oriented percolation in
dimension d ≤ 4, for which the expansions apply, but the bounds on the
coefficients fail. In these examples, Gaussian behaviour as formulated in
Theorems 2.1 and 2.2 is even not expected to hold. Another example for
which Theorem 2.1 is expected to hold, but the lace expansion fails is for
nearest-neighbour self-avoiding walk with weak nearest-neighbour attrac-
tion. See also Section 2.5.3 below. We will see that the use of the lace
expansion is quite delicate and technically challenging.

2.2.1 The expansion of the self-avoiding walk two-point function

The lace expansion is a combinatorial identity for ĉn in terms of a function
π̂m(k), defined in (2.2.22) below, stating that

ĉn+1(k) = D̂(k)ĉn(k) +
n+1∑
m=2

π̂m(k)ĉn+1−m(k). (2.2.1)

For self-avoiding walk, there are two substantially different derivations of
the lace expansion. We will describe both of these derivations below. The
first is based upon inclusion-exclusion, and obtains the recursion relation
by ignoring interaction and making up for the arising error (see also [60]).
This method is quite powerful, and will also be used to deal with oriented
percolation below. The second derivation uses a rewrite in terms of graphs,
and in this expansion the laces that give the lace expansion its name, appear
(see [6]). This derivation can also be adapted to lattice trees and lattice
animals, as well as to oriented percolation.

The inclusion-exclusion derivation of the expansion.

Define R(1)
n+1(x) by

cn+1(x) =
∑

y∈Zd

D(y)cn(x− y)−R(1)
n+1(x). (2.2.2)

The term R(1)
n+1(x) is the contribution of walks that contribute to the first

term on the right-hand side of (2.2.2), but not on the left-hand side. There-
fore, this contribution is due to paths that have at least one self-intersection.
Since the first term on the right-hand side of (2.2.2) can alternatively be



106 Remco van der Hofstad

seen as the contribution from concatenations of a step from 0 to some y
and a self-avoiding walk from y to x, this self-intersection must be at the
origin. The inclusion-exclusion derivation of the lace expansion studies the
correction term R(1)

n+1(x) in more detail by using inclusion-exclusion on the
avoidance properties of the paths involved.

Let P (1)
n+1(x) to be the set of paths ω ∈ Wn+1(x) which contribute to

R(1)
n+1(x), i.e., the walks ω for which there exists an l ∈ {2, . . . , n + 1}

(depending on ω) with ω(l) = 0 and ω(i) 6= ω(j) for all i 6= j with
{i, j} 6= {0, l}. For the special case x = 0, Pn+1(0) is the set of (n+1)-step
self-avoiding polygons. For general x, P (1)

n+1(x) is the set of self-avoiding
polygons followed by a self-avoiding walk from 0 to x, with the total length
being n + 1 and with the walk and polygon mutually avoiding. Then, by
definition,

R(1)
n+1(x) =

∑

ω∈P(1)
n+1(x)

W (ω). (2.2.3)

Diagrammatically the right-hand side of (2.2.2) can be represented by

∑
y∈Zd D(y) · y x − 0 x.

In the first term on the right side the line indicates an n-step walk from
y to x which is unconstrained, apart from the fact that it should be self-
avoiding.

We proceed by applying the inclusion-exclusion relation again toR(1)
n+1(x).

Indeed, we ignore the mutual avoidance constraint of the polygon and self-
avoiding walk that together form ω ∈ P (1)

n+1(x), and then make up for
the overcounted paths by excluding the walks where the polygon and the
self-avoiding walk do intersect. For y ∈ Zd, let

π(1)
m (y) = δ0,y

∑

ω∈P(1)
m (0)

W (ω), (2.2.4)

and define R(2)
n+1(x) by

R(1)
n+1(x) =

∑

y∈Zd

n+1∑
m=2

π(1)
m (y)cn+1−m(x− y)−R(2)

n+1(x). (2.2.5)

The next step is to investigate R(2)
n+1(x), which involves walks consisting of

a self-avoiding polygon and a self-avoiding walk from 0 to x, of total length
n + 1, where the self-avoiding polygon and the self-avoiding walk have an
intersection point additional to their intersection at the origin. Let P (2)

n+1(x)
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be the subset of walks of Wn+1(x) satisfying these requirement. Then we
clearly have

R(2)
n+1(x) =

∑

ω∈P(2)
n+1(x)

W (ω). (2.2.6)

Diagrammatically, we can represent (2.2.5) as follows:

R(1)
n+1(x) =

n+1∑
m=2

(π(1)
m ∗ cn+1−m)(x) − x

0

The two think lines are mutually avoiding, so that they together form a
self-avoiding walk. The walk and polygon may intersect more than once,
and we focus on the first intersection point.

We then perform inclusion-exclusion again, neglecting the avoidance be-
tween the portions of the self-avoiding walk before and after this first in-
tersection, and again subtracting a correction term. Due to the fact that
we look at the first intersection point of the self-avoiding walk and the self-
avoiding polygon, the three self-avoiding walks in the Θ-shaped diagram
are also mutually avoiding each other. We define R(3)

n+1(x) by

R(2)
n+1(x) =

∑

y∈Zd

n+1∑
m=2

π(2)
m (y)cn+1−m(x− y)−R(3)

n+1(x), (2.2.7)

where π(2)
m (y) is defined by

π(2)
m (x) =

∑

m1, m2, m3 ≥ 1
m1 + m2 + m3 = m

3∏

j=1

∑

ωj∈Cmj
(x)

W (ωi)I(ω1, ω2, ω3), (2.2.8)

and I(ω1, ω2, ω3) is equal to 1 if the ωi are pairwise mutually avoiding apart
from their common endpoints, and otherwise equals 0. We do not write
down an explicit formula for R(3)

n+1(x), as this already gets quite involved.
This inclusion-exclusion step can be diagrammatically represented as

R(2)
n+1(x) =

n+1X
m=2

(π(2)
m ∗ cn+1−m)(x) −

x0

The process of using inclusion-exclusion is continued indefinitely, and leads
to

cn+1(x) =
∑

y∈Zd

D(y)cn(x− y) +
∑

y∈Zd

n+1∑
m=2

πm(y)cn+1−m(x− y), (2.2.9)
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where

πm(y) =
∞∑

N=1

(−1)Nπ(N)
m (y). (2.2.10)

We will give explicit expressions for the π(N)
m (y) for N ≥ 3 below. Taking

the Fourier transform in (2.2.9), we obtain (2.2.1).

The algebraic derivation of the expansion. We see from the above
derivation using inclusion-exclusion that the formulas for π(N)

m get more
and more involved as N becomes larger. In this section, we derive the lace
expansion for self-avoiding walk using an algebraic approach which relies
on a rewrite in terms of graphs, and is due to Brydges and Spencer [6].
This derivation makes it much more simple to write down formulas for
π(N)

m , and also applies quite generally when the interaction is different than
the self-avoidance interaction.

We rewrite

cn(x) =
∑

ω∈Wn(x)

∏

0≤s<t≤n

(1− Ust(ω))W (ω), (2.2.11)

where

Ust(ω) =
{

1 if ω(s) = ω(t),
0 if ω(s) 6= ω(t). (2.2.12)

Indeed, we note that, for ω ∈ Wn(x),
∏

0≤s<t≤n

(1− Ust(ω)) = I[ω self-avoiding] = I[ω ∈ Cn(x)]. (2.2.13)

In this section, we define π̂m(k) and prove (2.2.1). We will derive the
expansion in a slightly more general setting. To introduce this setting, we
write, for integers 0 ≤ a < b,

K[a, b](ω) =
∏

a≤s<t≤b

(1− Vst(ω)), (2.2.14)

where Vst(ω) are certain numbers depending on the path ω. We further
define

cn(x) =
∑

ω∈Wn(x)

K[0, n](ω)W (ω), (2.2.15)

where the sum is over all n-step paths from 0 to x. We note that when

Vst(ω) = Ust(ω) = I[ω(s) = ω(t)], (2.2.16)

K[0, n](ω) is the indicator that the path ω of length n does not have any
self-intersections, i.e., the path is self-avoiding. However, when Vst(ω) is
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another function of the path, then the expansion remains valid. We will
see examples of other Vst(ω) in Section 2.5 below.

Given an interval I = [a, b] of integers with 0 ≤ a ≤ b, we refer to a pair
{s, t} (s < t) of elements of I as an edge. To abbreviate the notation, we
write st for {s, t}. A set of edges is called a graph. A graph Γ on [a, b] is
said to be connected if both a and b are endpoints of edges in Γ and if, in
addition, for any c ∈ (a, b) there is an edge st ∈ Γ such that s < c < t. The
set of all graphs on [a, b] is denoted B[a, b], and the subset consisting of all
connected graphs is denoted G[a, b].

The expansion is crucially based on the expansion of large products. In
general, for any set of indices I, we have that

∏

i∈I
(ai + bi) =

∑

I⊆I

∏

i∈I

ai

∏

j∈I\I
bi. (2.2.17)

Applying this to to I = B[a, b], ast = −Vst, bst = 1, for which the product
over bst is identically equal to 1, we get

K[a, b](ω) =
∑

Γ∈B[a,b]

∏

st∈Γ

(−Vst(ω)). (2.2.18)

Note that the size of B[0, n] is equal to 2(n
2), which is huge. For 0 ≤ a < b,

we define an analogous quantity, in which the sum over graphs is restricted
to connected graphs, namely,

J [a, b](ω) =
∑

Γ∈G[a,b]

∏

st∈Γ

(−Vst(ω)). (2.2.19)

We will now suppress ω in the notation. We claim that

K[0, n+ 1] = K[1, n+ 1] +
n+1∑
m=1

J [0,m]K[m,n+ 1]. (2.2.20)

Indeed, to prove (2.2.20), we note from (2.2.18) that the contribution to
K[0, n + 1] from all graphs Γ for which 0 is not in an edge is exactly
K[1, n + 1]. To resum the contribution from the remaining graphs, we
proceed as follows.

When Γ does contain an edge ending at 0, we let m(Γ) denote the largest
value ofm such that the set of edges in Γ with at least one end in the interval
[0,m] forms a connected graph on [0,m]. Then resummation over graphs
on [m,n+ 1] gives

K[0, n+ 1] = K[1, n+ 1] +
n+1∑
m=1

∑

Γ∈G[0,m]

∏

st∈Γ

(−Vst)K[m,n+ 1], (2.2.21)

which with (2.2.19) proves (2.2.20).
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Define

πm(x) =
∑

ω∈Wm(x)

J [0,m](ω)W (ω), m ≥ 1. (2.2.22)

The quantity πm(x) is sometimes called the irreducible two-point function.
Then (2.2.9) is obtained after insertion of (2.2.20) into (2.2.15) followed by
factorisation of the sum over ω. Since the sum over connected graphs is
smaller than the sum over all graphs, the coefficient πm(x) may be expected
to be smaller then the two-point function cm(x). However, since the num-
ber of connected graphs in G[0, n] is still at least 2( n

2−1) (since all graphs
containing 0n are elements of G[0, n]), the sum over connected graph is still
huge.

A lace is a minimally connected graph, i.e., a connected graph for which
the removal of any edge would result in a disconnected graph. The set of
laces on [a, b] is denoted L[a, b].

Given a connected graph Γ, the following prescription associates to
Γ a unique lace LΓ: The lace LΓ consists of edges s1t1, s2t2, . . ., with
t1, s1, t2, s2, . . . determined, in that order, by

t1 = max{t : at ∈ Γ}, s1 = a, (2.2.23)

ti+1 = max{t : ∃s < ti such that st ∈ Γ}, si+1 = min{s : sti+1 ∈ Γ}.
(2.2.24)

Given a lace L, the set of all edges st6∈L such that LL∪{st} = L is denoted
C(L). Edges in C(L) are said to be compatible with L.

We next rewrite (2.2.22) in a form that can be used to obtain good
bounds on πm(x). For this, we note that we can classify

LΓ = L ⇐⇒ Γ = L ∪ C, with C ⊆ C(L). (2.2.25)

This is due to the fact that the lace LΓ is obtained by checking maxima
and minima criteria. In fact, LΓ = L is equivalent to the statement that
an edge that is not in L is never chosen in (2.2.23) and (2.2.24), for which
it suffices to check each of the edges individually.

Using (2.2.25), we can partially resum the right-hand side of (2.2.19), to
obtain

J [a, b] =
∑

L∈L[a,b]

∑

Γ:LΓ=L

∏

st∈L

(−Vst)
∏

s′t′∈Γ\L
(−Vs′t′)

=
∑

L∈L[a,b]

∏

st∈L

(−Vst)
∑

C⊆C(L)

∏

s′t′∈C

(−Vs′t′). (2.2.26)

Since we can unexpand the sum over compatibles using (2.2.17) as
∑

C⊆C(L)

∏

s′t′∈C

(−Vs′t′) =
∏

s′t′∈C(L)

(1− Vs′t′), (2.2.27)
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we finally arrive at

J [a, b] =
∑

L∈L[a,b]

∏

st∈L

(−Vst)
∏

s′t′∈C(L)

(1− Vs′t′). (2.2.28)

This rewrite has two main advantages. The first advantage is that the
sum over laces is much smaller than the sum over connected graphs. In fact,
the total number of laces on [0, n] is bounded from above by e2n. Indeed,
we note that the number of laces of size N on [0, n] is bounded above by
the number of possible choices of 0 = s1 < s2 < s3 < . . . < sN < n times
the number of possible choices 0 < t1 < t2 < . . . < tN−1 < tN = n, which is
bounded above by

n2(N−1)

((N − 1)!)2
=

1
(2(N − 1))!

n2(N−1)

(
2(N − 1)
N − 1

)
≤ (2n)2(N−1)

(2(N − 1))!
. (2.2.29)

Summing over N ≥ 1 gives a bound e2n, which is much smaller than 2(n
2).

The second advantage is that the interaction is restored along the com-
patible edges. In particular, for Vst(ω) = Ust(ω) in (2.2.12), we have that
ω(s) 6= ω(t) for all st ∈ C(L).

We finally identify π(N)
m (x). For 0 ≤ a < b, we define J (N)[a, b] to be the

contribution to (2.2.26) coming from laces consisting of exactly N edges,
i.e.,

J (N)[a, b] =
∑

L∈L(N)[a,b]

∏

st∈L

Vst

∏

s′t′∈C(L)

(1− Vs′t′), N ≥ 1, (2.2.30)

where L(N)[a, b] is the set of laces consisting of precisely N edges. Then

J [a, b] =
∞∑

N=1

(−1)NJ (N)[a, b] (2.2.31)

and by (2.2.22),

πm(x) =
∞∑

N=1

(−1)Nπ(N)
m (x), (2.2.32)

where we define

π(N)
m (x) =

∑

ω∈Wm(x)

J (N)[0,m](ω)W (ω) (2.2.33)

=
∑

ω∈Wm(x)

W (ω)
∑

L∈L(N)[0,m]

∏

st∈L

Vst(ω)
∏

s′t′∈C(L)

(1− Vs′t′(ω)).

This completes the algebraic derivation of the lace expansion.
We finally investigate π(1)

m (x) and π(2)
m (x). We return to the choice Ust

in (2.2.12). For this choice, and using that U0,1 = 0 since a random walk
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cannot return to the same site in one step when D(0) = 0, we note that
we can restrict to m ≥ 2 for π(N)

m (x). When N = 1, there is only one lace
L = {0m}, and all other edges are compatible. Therefore, π(1)

m (x) coincides
with (2.2.4). Moreover, when N = 2, we have that

L(2)[0,m] =
{{0t1, s2m} : 0 < s2 < t1 < m

}
. (2.2.34)

Therefore, with L = {0t1, s2m},
∏

st∈L

Ust(ω) = I[ω(t1) = 0, ω(s2) = ω(m)]. (2.2.35)

Also, it can be seen that ω1, ω2 and ω3, given by ω1 = (0, ω(1), . . . , ω(s2)),
ω2 = (ω(t1), ω(t1−1), . . . , ω(s2)) and ω3 = (ω(t1), ω(t1 +1), . . . , ω(m)), are
three walks starting and ending at the same site. Since

∏

s′t′∈C(L)

(1− Vs′t′(ω)) = I(ω1, ω2, ω3)K[0, s2]K[s2, t1]K[t1,m], (2.2.36)

where we recall the definition of I(ω1, ω2, ω3) in (2.2.8), the walks ω1, ω2

and ω3 are three mutually avoiding self-avoiding walks. Therefore, also
π(2)

m (x) coincides with (2.2.8). Similarly, it can be seen that the higher
order lace expansion coefficients π(N)

m (x) in the algebraic derivation and the
inclusion-exclusion derivation agree.

2.2.2 The lace expansion for the oriented percolation two-point
function

In this section, we will derive the lace expansion for the oriented percolation
two-point function. This expansion is reminiscent of the inclusion-exclusion
expansion for self-avoiding walk in Section 2.2.1 above. The lace expansion
for the oriented percolation two-point function gives that there exist lace
expansion coefficients {πm(x)}m≥0,x∈Zd such that for all n ≥ 0

τn+1(x) =
n∑

m=0

∑

u,v∈Zd

πm(u)pD(v − u)τn−m(x− v) + πn+1(x). (2.2.37)

The result of the expansion in (2.2.37) is quite close to the result of the
expansion for self-avoiding walk in (2.2.9). We stress that even though the
notation πm(x) appears in both expansions, the lace expansion coefficients
for oriented percolation and self-avoiding walk are different. However, even
though the lace expansion coefficients are different, they play an identical
role in the analysis which we describe later on.

There are several possible expansions that lead to (2.2.37). In [40], an
expansion was chosen that relies on the independence of bonds, and applies
to oriented percolation as well as to (unoriented) percolation. For perco-
lation, this expansion was first derived in [25]. In [50, 51], an expansion
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was used that was based on the algebraic derivation for self-avoiding walks
in [6]. In [55], an expansion was performed using inclusion-exclusion. The
inclusion-exclusion expansion was rederived in [37], where it was applied
to oriented percolation and the contact process simultaneously. The lace
expansion coefficients πm(y) in each of these expansion are the same, since
(2.2.37) uniquely identifies πm(y) for every m and y, which can be seen eas-
ily by using induction on m. On the other hand, in each of the expansions,
we find that

πm(y) =
∞∑

N=0

(−1)Nπ(N)
m (y), (2.2.38)

and we expect the formulas for π(N)
m (y) to be different in the Hara-Slade

expansion used in [40] and in the Nguyen-Yang and the Sakai expansion,
while they are identical in the Nguyen-Yang and the Sakai expansion. We
now describe the simplest of these expansions, the Sakai expansion, follow-
ing the presentation in [37].

In the expansion, it is convenient to abbreviate Λ = Zd×Z+, and to use
bold letters such as o = (o, 0) and x = (x, n), and to write τ(x) = τn(x),
π(N)(x) = π(N)

n (x), and so on. Then, the lace expansion in (2.2.37) can be
rewritten as

τ(x) = π(x) + (π ?pD ? τ)(x), (2.2.39)

where ? denotes convolution in Λ, i.e.,

(f ?g)(x) =
∑

y∈Λ

f(y) g(x− y), (2.2.40)

where we recall that the two-point function is given by τ(x) = Pp(o −→ x).
In the sequel, we will drop the subscript p from the notation, and write P
instead of Pp.

While the lace expansion for self-avoiding walks quantifies the statement
that self-avoiding walk is a small perturbation of random walk, we can
intuitively think of (2.2.37) as saying that occupied paths in oriented per-
colation clusters are like random walk paths. To make this picture more
precise, we note that we can summarise the paths from o to x as a string of
sausages. In this picture, we say that a bond is pivotal for the connection
from x to y when x −→ y in the (possibly modified) configuration where
the bond is made occupied, while x is not connected to y in the (possibly
modified) configuration where the bond is made vacant. The pivotal bonds
are ordered in time, and each occupied path from o to x must pass through
all pivotal bonds. The pivotals are the strings in the sausage and strings
picture, while the sausages are the pieces of the cluster of o between the
pivotal bonds. The string and sausages picture turns the part of the cluster
between o and x in a linear structure.

In turn, the sausage in between pivotal bond bi and bi+1 can be divided
into two disjoint pieces. The first is the backbone, which are the sites y
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such that bi −→ y −→ bi+1, where, for a bond b = (u,v), we write b = u

and b = v. The second part are the hairs, and these are all the sites of
the sausage which are not in the backbone. Then, the fact that bi is piv-
otal is equivalent to saying that all sausages below bi do not intersect the
backbones above bi. Since, by time-orientation, the different backbones
cannot intersect, this is equivalent to the statement that none of the hairs
of the previous sausages share sites with the later backbones. This intro-
duces an interaction between the sausages and the backbones, and to derive
the expansion, we will use inclusion-exclusion to effectively deal with this
interaction.

We split, depending on whether there is a pivotal bond for o −→ x, to
obtain

τ(x) = P(o =⇒ x) +
∑

b

P(o =⇒ b, b occupied & pivotal for o −→ x),

(2.2.41)

where we write v =⇒ x when there are at least two bond-disjoint paths
from v to x consisting of occupied bonds, and, by convention, we say that
x =⇒ x for all x.

We let

π(0)(x) = P(o =⇒ x) (2.2.42)

denote the contribution to τ(x) of configurations where no pivotal bond
exists, so that we can rewrite (2.2.41) as

τ(x) = π(0)(x) +
∑

b

P(o =⇒ b, b −→ x, b pivotal for o −→ x), (2.2.43)

where we further abbreviate b −→ x for the statement that b is occupied
and b −→ x.

Define

R(1)(x) =
∑

b

P(o =⇒ b, b −→ x, b not pivotal for o −→ x), (2.2.44)

then, by inclusion-exclusion on the event that b is pivotal for o −→ x, we
arrive at

τ(x) = π(0)(x) +
∑

b

P(o =⇒ b, b −→ x)−R(1)(x). (2.2.45)

The event o =⇒ b only depends on bonds with time variables less than
or equal to the one of b, while the event b −→ x only depends on bonds
with time variables larger than or equal to the one of b. Therefore, by the
Markov property, we obtain

P(o =⇒ b, b −→ x) = P(o =⇒ b)P(b occupied)P(b −→ x)

= π(0)(b) pD(b) τ(x− b),
(2.2.46)
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where we abuse notation and write D((x, n), (y, n+ 1)) = D(y − x). Using
(2.2.46), we arrive at

τ(x) = π(0)(x) + (π(0)
?pD ? τ)(x)−R(1)(x). (2.2.47)

This completes the first step of the expansion, and we are left to investigate
R(1)(x). For this, given a bond b, we write C̃b(x) for the set of sites to
which x is connected in the (possibly modified) configuration in which b is
made vacant.

We then note that

{v −→ b, b −→ x, b not pivotal for v −→ x}

=
{
v −→ b, b occupied, b

C̃b(v)−−−−→ x
}
,

(2.2.48)

where, given a site set C, we say that v is connected to x through C,
and write v

C−→ x, if every occupied path connecting v to x has at least
one bond with an endpoint in C. We often abbreviate {b C−→ x} = {b
occupied} ∩ {b C−→ x}.

Using the above notation, we can rewrite

R(1)(x) =
∑

b

P
(
o =⇒ b, b

C̃b(o)−−−−→ x
)
. (2.2.49)

The event {v C−→ x} can be decomposed into two cases depending on
whether there is or is not a pivotal bond b for v −→ x such that v

C−→ b.
Let

E(b,y;C) = {b C−→ y} ∩ {
@ b′ pivotal for b −→ y s.t. b C−→ b′

}
. (2.2.50)

See Figure 1 for a schematic representation of the event E(b,x;C).
If there are pivotal bonds for v −→ x, then we take the first such pivotal

bond b for which v
C−→ b. Then we have the partition

{v C−→ x} = E′(v,x;C)

∪̇
⋃̇

b

{
E′(v, b;C) ∩ {b occupied & pivotal for v −→ x}}.

(2.2.51)
Defining

π(1)(y) =
∑

b

P
({o =⇒ b} ∩ E(b,y; C̃b(o))

)
, (2.2.52)

we obtain

R(1)(x) = π(1)(x) +
∑

b1,b2

P
({o =⇒ b1} ∩ E(b1, b2; C̃

b1(o))

∩ {b2 occupied & pivotal for b1 −→ x}).
(2.2.53)
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b

x

C

Figure 1: Schematic representation of the event E(b,x;C).

To the second term, we apply the inclusion-exclusion relation

{b occupied & pivotal for v −→ x}

= {v −→ b, b −→ x} \ {
v −→ b, b

C̃b(v)−−−−→ x
}
.

(2.2.54)

We will be able to use the Markov property for the contribution of the
first event, and, to denote the contribution due to the overcounted event

b1 −→ b2, b2
C̃b2 (b1)−−−−−→ x, we define

R(2)(x) =
∑

b1,b2

P
({o =⇒ b1} ∩ E(b1, b2; C̃

b1(o)) ∩ {
b2

C̃b2 (b1)−−−−−→ x
})
.

(2.2.55)

Since E(b1, b2;C) ∩ {b1 −→ b2} = E(b1, b2;C), we obtain

R(1)(x) = π(1)(x) +
∑

b1,b2

P
({o =⇒ b1} ∩ E(b1, b2; C̃

b1(o)) ∩ {b2 −→ x})

−R(2)(x).
(2.2.56)

To use the Markov property, we note that the event {o =⇒ b1} ∩
E(b1, b2; C̃

b1(o)) depends only on bonds before b2, while {b2 −→ x} de-
pends only on bonds after b2. By the Markov property, we end up with

R(1)(x) = π(1)(x) +
∑

b2

π(1)(b2) pD(b2) τ(x− b2)−R(2)(x)

= π(1)(x) + (π(1)
?pD ? τ)(x)−R(2)(x), (2.2.57)
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so that

τ(x) = π(0)(x)− π(1)(x) +
(
(π(0) − π(1)) ?pD ? τ

)
(x) +R(2)(x). (2.2.58)

This completes the second step of the expansion.
To complete the expansion for τ(x), we must investigate R(2)(x) in more

detail by repeated use of inclusion-exclusion. For this, we note that R(2)(x)

involves the probability of a subset of
{
b2

C̃b2 (b1)−−−−−→ x
}
, to which we will use

(2.2.51) and (2.2.54) repeatedly, and use the Markov property. We will
not describe the repeated use of inclusion-exclusion, and merely state the
result. For the details of the expansion, please see [37, Section 3].

To state the result of the expansion, we make a few more definitions. We
let

Ẽ(0)

~b0
(x) = {o =⇒ x}, (2.2.59)

and, for ~bN = (b1, . . . , bN) with N ≥ 1, we define

Ẽ(N)

~bN
(x) = Ẽ(N−1)

~bN−1
(b

N) ∩ E(
bN ,x; C̃bN (bN−1)

)
. (2.2.60)

Using this notation, we define

π(N)(x) =
∑

~bN

P
(
Ẽ(N)

~bN
(x)

)
, and π(x) =

∞∑

N=0

(−1)Nπ(N)(x).

(2.2.61)
Then, for N = 0, 1, (2.2.61) coincides with (2.2.42) and (2.2.52), respec-
tively. Note that the sum over N in (2.2.61) is a finite sum, as long as nx is
finite, where nx denotes the time coordinate of x, since each of the bonds
b1, . . . , bN eats up at least one time-unit, so that π(N)(x) = 0 for N > nx.
Then, (2.2.39) follows. This completes the derivation of the lace expansion
for the oriented percolation two-point function.

2.3 Bounds on the lace expansion coefficients

As explained in Section 2.2, any lace expansion analysis comes in three
steps. The first is the derivation of the expansion, which was explained in
detail in Section 2.2, both for self-avoiding walk and for oriented percola-
tion. The second step is the bound on the lace expansion coefficients π,
which we explain in this section. In Section 2.3.1, we bound the coefficients
for self-avoiding walk, in Section 2.3.2 for oriented percolation.

2.3.1 Bounds on the self-avoiding walk coefficients

In this section, we indicate how we can bound
∑

x∈Zd |πm(x)| in terms of
‖cj‖∞ and ‖cj‖1 with j < m. Here we use the notation ‖h‖1 =

∑
x∈Zd |h(x)|
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Ẽ(0)

~b0
(x) =

x

o

Ẽ(1)

~b1
(x) =

x

o

Ẽ(2)

~b2
(x) =

x

o

⋃

x

o

Figure 2: Schematic representations of the events in the definition of
π(0)(x), π(1)(x) and π(2)(x).

and ‖h‖∞ = supx |h(x)| for functions h : Zd → R. These bounds are for-
mulated in [42, Proposition 4.1], with slightly different notation (π(N)

m (x) is
denoted there by π(1)

m,N(x)).
To initiate the bounds, we note that

∑

x∈Zd

|πm(x)| ≤
∞∑

N=1

∑

x∈Zd

π(N)
m (x). (2.3.1)

To convey the strategy behind the bounds on πm, we will prove the bounds
on

∑
x∈Zd π(1)(x) and

∑
x∈Zd π(2)(x). Recall from (2.2.4) that

∑

x∈Zd

π(1)
m (x) =

∑

ω∈P(1)
m (0)

W (ω) =
∑

y∈Zd

D(y)cm−1(y) ≤ ‖cm−1‖∞. (2.3.2)

This bounds
∑

x∈Zd π(1)
m (x) in terms of ‖cm−1‖∞.

We proceed with N = 2. Recall (2.2.8), and bound I(ω1, ω2, ω3) ≤ 1,
which neglects the mutual avoidance between ω1, ω2 and ω3, to obtain

∑
x

π(2)
m (x) ≤

∑
x

∑

m1, m2, m3 ≥ 1
m1 + m2 + m3 = m

3∏

j=1

cmj (x)

≤ 3!
∑

m1 ≥ m2 ≥ m3 ≥ 1
m1 + m2 + m3 = m

‖cm1‖∞‖cm2‖∞‖cm3‖1. (2.3.3)

Thus π(2)
m can be bounded in terms of norms of cl with l < m. Similar

estimates are possible for π(N)
m with N ≥ 3. The fact that l here is strictly

less than m is what enables the inductive approach to succeed.
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In the setting of self-avoiding walks in Section 2.1.2, the two-point func-
tion cn(x) is exponentially small when n grows large. Indeed,

c
1
n
n ≈ µ < 1. (2.3.4)

Therefore, to prove the asymptotics for cn in Theorem 2.1, we need to
cancel out the exponential decay of the two-point function, i.e., to multiply
cn by µ−n. One of the goals of the analysis of the lace expansion is to give
a representation for µ.

Fix some z, which we think to be close to µ−1, and suppose that the
bounds

‖cl‖1z
l ≤ K, and ‖cl‖∞zl ≤ Kβ(l + 1)−d/2 (2.3.5)

were true, for all l < m, where we define

β = L−d, (2.3.6)

to indicate the inverse of the range of the model. We will take the model to
be spread-out, which means that β is a small parameter. If cl were replaced
with pl, the random walk two-point function, these bounds, with z = 1,
follow from the fact that ‖pl‖1 = 1 and from the bounds following from
the local central limit theorem (see (2.1.16)). Therefore, these bounds are
consistent with the Gaussian behaviour of self-avoiding walk. Applying
these bounds to (2.3.3) then gives
∑

x∈Zd

π(2)
m (x)zm ≤ 3!

∑

m1 ≥ m2 ≥ m3 ≥ 1
m1 + m2 + m3 = m

‖cm1‖∞zm1‖cm2‖∞zm2‖cm3‖1z
m3

(2.3.7)

≤ 3!K3β2
∑

m1 ≥ m2 ≥ m3 ≥ 1
m1 + m2 + m3 = m

(m1 + 1)−d/2(m2 + 1)−d/2

≤ 3!K3β2
(m

3
+ 1

)−d/2 ∑

m2≥m3≥1

(m2 + 1)−d/2 (2.3.8)

≤ CK3β2(m+ 1)−d/2,

where the last inequality uses d > 4. The bounds on
∑

x∈Zd π(N)
m (x) for

N ≥ 3 are similar, as shown in [42, Section 5], and use induction on N .
The main result is the following:

Proposition 2.3 (Bounds on the lace expansion). Assume (2.3.5)
for some z and all m ≤ n. Then there exist β0 > 0 and CK < ∞ (both
depending on d, but not on n and L) such that for β < β0, m ∈ Z+ with
2 ≤ m ≤ n+ 1, q = 0, 2, 4 and δ′ ∈ [0, 1 ∧ δ],

∑
x

|x|q |πm(x)|zm ≤ CKσ
qβ

(m+ 1)(d−q)/2
. (2.3.9)
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In the analysis, related results (such as Taylor expansions for π̂m(k) for k
small) are also necessary, but we refrain from stating these. The important
message in Proposition 2.3 is that bounds on the two-point function cj for
all j ≤ n, as formulated in (2.3.5), imply bounds on the lace expansion
coefficients πm(x) for m ≤ n + 1. In turn, in the lace expansion equation
(2.2.9) for cn+1, only the lace expansion coefficients πm(x) for m ≤ n + 1
appear, as well as cj for all j ≤ n. Therefore, the induction hypotheses
should give us the bounds that allow us in turn to advance the induction
hypotheses. For this, we note that we have assumed bounds on ‖cl‖1 and
‖cl‖∞, so the induction hypotheses must imply the bounds on these norms
formulated in (2.3.5).

The fact that bounds on cj for j ≤ n imply bounds on πm for m ≤ n+1,
which in turn imply bounds on cj for j ≤ n + 1 is a kind of consistency
which is present in the lace expansion. This consistency is crucial in the
analysis of the lace expansion recurrence relation, as will be explained in
more detail in Section 2.4 below.

2.3.2 Bounds on the oriented percolation coefficients

For the bounds on π for oriented percolation, the strategy is similar to the
one sketched in Section 2.3.1. We indicate this by bounding π(0).

Recall from (2.2.42) that
∑

x∈Zd

π(0)
m (x) =

∑

x∈Zd

P
(
((0, 0) −→ (x,m)) ◦ ((0, 0) −→ (x,m))

)

≤
∑

x∈Zd

P
(
(0, 0) −→ (x,m))2 = τm(x)2,

(2.3.10)

where ((0, 0) −→ (x,m)) ◦ ((0, 0) −→ (x,m)) is the event that there are
two bond-disjoint paths from (0, 0) to (x,m). The bound follows from the
Van den Berg-Kesten inequality or BK inequality [21], which states that
the probability of paths existing disjointly is bounded from above by the
product of the probabilities of the occurrence of these paths. We obtain
that for any p ∈ [0, 1],

∑

x∈Zd

π(0)
m (x) ≤

∑

x∈Zd

τm(x)2. (2.3.11)

Then we obtain that
∑

x∈Zd

π(0)
m (x) ≤ ‖τm‖1‖τm‖∞. (2.3.12)

Fix some p, which we think to be close to pc, and suppose that the bounds

‖τl‖1 ≤ K, and ‖τl‖∞ ≤ Kβ(l + 1)−d/2 (2.3.13)
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were true, for all l < m. Then, we cannot directly bound
∑

x∈Zd π(0)
m (x),

since τm appears, rather than τj for some j < m. For this, we use Boole’s
inequality and the Markov property to obtain

τm(x) = Pp

( ∪y {(0, 0) −→ (y, 1) −→ (x,m)}) ≤
∑

y

pD(y)τm−1(x− y).

(2.3.14)
These bounds immediately imply that

‖τm‖1 ≤ p‖τm−1‖1 and ‖τm‖∞ ≤ p‖τm−1‖∞. (2.3.15)

Therefore, we obtain that
∑

x∈Zd

π(0)
m (x) ≤ p2‖τm−1‖1‖τm−1‖∞ ≤ p2K2βm−d/2 ≤ Cp2K2β(m+ 1)−d/2.

(2.3.16)

It can be seen that similar bounds are valid for the higher-order contri-
butions to the lace expansion coefficients π(N)

m . Therefore, the bounds in
(2.3.13) for all j < m imply bounds on πm, as proved in [41, Section 4].
These bounds are formulated in the following proposition, which is similar
to Proposition 2.3:

Proposition 2.4 (Bounds on the lace expansion). Assume (2.3.13)
for some p and all m ≤ n. Then there exist β0 > 0 and CK < ∞ (both
depending on d, but not on n and L) such that for β < β0, m ∈ Z+ with
2 ≤ m ≤ n+ 1, q = 0, 2, 4 and δ′ ∈ [0, 1 ∧ δ],

∑
x

|x|q |πm(x)| ≤ CKσ
qβ

(m+ 1)(d−q)/2
. (2.3.17)

Again several related bounds on the lace expansion are required in the
analysis. The most difficult of these is the bound on the derivative of∑

x πm(x) with respect to p. See [41, Section 4] or [37, Section 4] for
details.

2.4 Induction for two-point functions

As explained in Section 2.2, any lace expansion analysis requires three steps.
The first step is the derivation of the expansion, which is described in detail
in Section 2.2. The second step is the derivation of the bounds on the lace
expansion coefficients, and these bounds were sketched and formulated in
Section 2.3. The bounds on the lace expansion coefficients are intimately
related to the form of the expansion. The final step in a lace expansion
analysis is the analysis of the recursion relation. This analysis boils down
to the proof of the asymptotics of the recursion relation, using the bounds
on the coefficients. In this section, we describe the inductive method, which
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allows to derive the asymptotics for two-point functions which have a time
variable. The inductive method was first used in [33] to prove diffusive
behaviour for a certain class of weakly self-avoiding walks. This model is
described in more detail in Section 2.5.1 below. In [40], the method was
generalised to general lace expansion equations, where the consistency of
the recurrence relation was formulated as an assumption on the model and
the expansion, and the diffusive results in Theorems 2.1 and 2.2 were shown
under this assumption. Therefore, to prove results of the form in Theorems
2.1 and 2.2, it suffices to verify the consistency assumption, which is a
consequence of the bounds on the lace expansion coefficients. Apart from
its applications to the oriented percolation and self-avoiding walk two-point
function, the generalised induction was also applied to a particular version
of self-avoiding walks with nearest-neighbour attraction in [63]. See Section
2.5.3 for more details on the model and results. In this section, we describe
the generalised inductive approach in [40].

When applied to self-avoiding walks or oriented percolation, the lace
expansion gives rise to a recursion relation of the form

fn+1(k; z) =
n+1∑
m=1

gm(k; z)fn+1−m(k; z) + en+1(k; z) (n ≥ 0), (2.4.1)

with f0(k; z) = 1, and where z plays the role of the parameter in the model
which needs to be tuned to the critical value. For example, for oriented
percolation, z is equal to the percolation parameter p. Here, k ∈ [−π, π]d

is the Fourier variable, which is dual to the spatial lattice variable x ∈ Zd.
We think of the functions gm and em as given, and the goal is to understand
the behaviour of the solution fn(k; z) of (2.4.1). We first rewrite the lace
expansion equation for self-avoiding walk and oriented percolation in the
form in (2.4.1).

For self-avoiding walk, the lace expansion in (2.2.1) yields that, for n ≥ 0,
after multiplication by zn+1,

ĉn+1(k)zn+1 = zD̂(k)ĉn(k)zn +
n+1∑
m=2

π̂m(k)zmĉn+1−m(k)zn+1−m (n ≥ 0).

(2.4.2)
This is in the form of (2.4.1), with fn(k; z) = ĉn(k)zn, g1(k; z) = zD̂(k),
gm(k; z) = π̂m(k)zm for m ≥ 2, and en(k; z) = 0.

For oriented percolation, on the other hand, the lace expansion yields
that, now writing τ̂n+1(k; z) for the Fourier transform of the two-point
function when the percolation parameter is equal to z,

τ̂n+1(k; z) = zD̂(k)τ̂n(k; z) + zD̂(k)
n∑

m=2

π̂m(k; z)τ̂n−m(k; z)

+ π̂n+1(k; z) (n ≥ 0).

(2.4.3)
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Equation (2.4.3) is a special case of (2.4.1) with the choices fn(k; z) =
τ̂n(k; z), en(k; z) = π̂n(k; z), g1(k; z) = zD̂(k), g2(k; z) = 0, gm(k; z) =
zD̂(k)π̂m−1(k; z) for m ≥ 3.

The consistency in the recurrence relation is in general formulated by
two assumptions on the coefficients gm and em in (2.4.1). To be able to
describe these assumptions, we write, for a function f : [−π, π]d → R,

‖f‖1 =
∫

[−π,π]d

dk

(2π)d
|f(k)|. (2.4.4)

Then, the assumptions on em and gm state that bounds on fj(0) and ‖fj‖1

for j ≤ n and fixed z imply bounds on em and gm for m ≤ n + 1. In
particular, these bounds imply that

|gm(k; z)| ≤ CKβ

(m+ 1)d/2
and |∂zgm(k; z)| ≤ CKβ

(m+ 1)(d−2)/2
.

(2.4.5)

The second bound shows that the coefficients are sufficiently smooth in the
parameter z. For self-avoiding walk, ∂zgm(k; z) = mz−1gm(k; z), so the
second bound in (2.4.5) follows immediately from the first in (2.4.5).

The proof of these assumptions for self-avoiding walk and oriented per-
colation follows from Propositions 2.3–2.4. However, Propositions 2.3–2.4
involve supremum-norms of the two-point function rather than the integral
norm of its Fourier transform. These can be related as we explain now.
We prove the relation for cn, but the bounds are valid rather generally. We
first use that ‖cn‖1 =

∑
x cn(x) = ĉn(0), so that bounds on ‖cn‖1 follow

from the bounds on ĉn(k) for k = 0. We further note that, by the Fourier
inversion formula,

cn(x) =
∫

[−π,π]d

dk

(2π)d
e−ik·xĉn(k). (2.4.6)

Therefore, we arrive at

‖cn‖∞ = sup
x∈Zd

∫

[−π,π]d

dk

(2π)d
e−ik·xĉn(k) ≤

∫

[−π,π]d

dk

(2π)d
|ĉn(k)| = ‖ĉn‖1.

(2.4.7)
In particular, Propositions 2.3 can be reformulated as saying that bounds
on ĉj(0) and ‖ĉj‖1 for j ≤ n imply bounds on π̂m for m ≤ n+ 1.

One of the main difficulties is that the parameter z should be carefully
tuned to a critical value. For self-avoiding walks, this critical value is equal
to zc = µ−1, where µ describes the exponential decay of cn. For oriented
percolation, this critical value is equal to zc = pc, the critical percolation
threshold. The main difficulty, as we now explain, is that this critical value
can be uniquely defined in terms of the lace expansion coefficients πm, but
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for this, all coefficients are necessary. This makes the use of induction more
intricate.

We now show how we can identify the critical value zc and the diffusion
constant v in terms of the lace expansion coefficients. For simplicity, we
only treat self-avoiding walk. We let Gz(x) be the generating function of
cn(x), i.e.,

Gz(x) =
∞∑

n=0

zncn(x). (2.4.8)

We let Ĝz(k) denote the Fourier transform of Gz(x). Then, Ĝz(0) is the
generating function of cn =

∑
x∈Zd cn(x). By (2.1.27), it is clear that

Ĝz(0) <∞ when z < µ−1, while Ĝz(0) = ∞ when z > µ−1. Moreover, by
(2.1.29), we have that Ĝµ−1(0) = ∞. Therefore, zc = µ−1 can be uniquely
identified as the radius of convergence of the generating function Ĝz(0).

By (2.4.2), we see that we have the linear equation

Ĝz(k) = 1 + [zD̂(k) + Π̂z(k)]Ĝz(k), (2.4.9)

where the 1 on the right-hand side is the contribution due to the zero-step
walk, for which cn(x) = δ0,x, and where

Π̂z(k) =
∞∑

m=0

π̂m(k)zm. (2.4.10)

We can solve this equation explicitly to yield

Ĝz(k) =
1

1− [zD̂(k) + Π̂z(k)]
. (2.4.11)

Taking k = 0 and using (2.1.3), we obtain that

Ĝz(0) =
1

1− [z + Π̂z(0)]
. (2.4.12)

Since zc = µ−1 is such that Ĝz(0) = ∞, the critical value zc = µ−1 must
obey the implicit equation

zc + Π̂zc(0) = 1, or zc = 1−
∞∑

m=2

π̂m(0)zm
c . (2.4.13)

The main difficulty is that (2.4.13) involves π̂m(0) for all m ≥ 2. In a
similar way, we see that, by differentiating with respect to z and using
(2.4.13),

Ĝz(0) =
1

1− [z + Π̂z(0)]
=

1
zc − z + [Π̂zc(0)− Π̂z(0)]

≈ 1
(zc − z)[1 + ∂zΠ̂z(0)]z=zc

,

(2.4.14)
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if we assume that sufficiently many derivatives exist. When we compare
with Theorem 2.1(a) with k = 0, we see that

Ĝz(0) =
∞∑

n=0

zncn ≈
∞∑

n=0

znz−n
c A =

Azc

zc − z
, (2.4.15)

so that we conclude that

A =
1

zc[1 + ∂zΠ̂z(0)]z=zc

=
1

zc +
∑∞

m=2mπ̂m(0)zm
c

. (2.4.16)

In the more general context of (2.4.1), it is not hard to verify that

A =
1 +

∑∞
m=1 em(0; zc)

1 +
∑∞

m=2 ∂zg(0; zc)
. (2.4.17)

Finally, assuming that ĉn(k) ≈ Ae−σ2v|k|2/2d, a similar computation yields
that

v =
− 1

σ2

∑n
m=1∇2gm(0; z)

1 +
∑n

m=1(m− 1)gm(0; z)
. (2.4.18)

We conclude that the constants zc, A and v involve π̂m(0) for all m ≥ 2.
In the next section, we show how this problem can be resolved.

2.4.1 Statement of the induction hypotheses

In the frame work of (2.4.1), it can be seen that the critical value zc is
given by

zc = 1−
∞∑

m=2

gm(0; zc). (2.4.19)

To circumvent the difficulty that the critical value zc is given in terms of
the lace expansion coefficients π̂m for all m ≥ 1, we use a recursion, which
tunes into the solution to (2.4.19). We will do this in the general frame
work of (2.4.1). For this, we let z0 = z1 = 1, and define zn recursively by

zn+1 = 1−
n+1∑
m=2

gm(0; zn), n ≥ 1. (2.4.20)

When the sequence zn converges, using the bound in (2.4.5), as well as the
bound on the derivative in (2.4.5), it follows that the limit z∞ of zn satisfies

z∞ = 1−
∞∑

m=2

gm(0; z∞). (2.4.21)

Moreover, from the assumptions on gm, it follows that the solution to
(2.4.19) is unique, so that z∞ = zc. Note, however, that this equality can
only be established after the convergence of zn has been verified.
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We now state the induction hypotheses. For this, we need some further
notation. We abbreviate

a(k) = 1− D̂(k). (2.4.22)

The induction hypotheses involve a sequence vn, which tunes into the vari-
ance factor v computed in (2.4.18), and which is defined as follows. We set
v0 = b0 = 1, and, for n ≥ 1, we define

bn = − 1
σ2

n∑
m=1

∇2gm(0; z), cn =
n∑

m=1

(m− 1)gm(0; z), vn =
bn

1 + cn
.

(2.4.23)
We see that vn is an approximation to v in (2.4.18), by neglecting the
contributions of gm for m ≥ n + 1. The diffusion constant σ2v of Theo-
rem 2.1–2.2 will turn out to be given by σ2v∞(zc). However, we have not
yet proved that both series in the definition of v∞ converge. This fact, as
well as the convergence of zn to zc, will be proved in the course of the
induction.

The z–dependence of bn, cn, vn will usually be left implicit in the nota-
tion. We will often simplify the notation by dropping z also from en, fn

and gn, and write, e.g., fn(k) = fn(k; z).
The induction hypotheses also involve several constants. Let d > 4, and

recall that ε was specified in (2.1.12). We fix γ, δ, ρ > 0 according to

0 < d−4
2 − ρ < γ < γ + δ < 1 ∧ d−4

2 ∧ ε. (2.4.24)

This can be done by first fixing γ ∈ (0, 1 ∧ d−4
2 ∧ ε) and then choosing

δ and ρ accordingly. We also introduce constants K1, . . . ,K5, which are
independent of β. To advance the induction, we will need to assume that

K3 À K1 À K4 À 1, K2 À K1,K4, K5 À K4. (2.4.25)

Here aÀ b denotes the statement that a/b is sufficiently large. The amount
by which, for instance, K3 must exceed K1 is independent of β and is
determined in the course of the advancement of the induction.

For n ≥ 1, we define intervals

In = [zn −K1βn
−(d−2)/2, zn +K1βn

−(d−2)/2]. (2.4.26)

The induction hypotheses are that the following four statements hold for
all z ∈ In and all 1 ≤ j ≤ n:

(H1) |zj − zj−1| ≤ K1βj
−d/2.

(H2) |vj − vj−1| ≤ K2βj
−(d−2)/2.
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(H3) For k such that a(k) ≤ γj−1 log j, fj(k; z) can be written in the form

fj(k; z) =
j∏

i=1

[1− via(k) + ri(k)] ,

with ri(k) = ri(k; z) obeying

|ri(0)| ≤ K3βi
−(d−2)/2, |ri(k)− ri(0)| ≤ K3βa(k)i−δ.

(H4) For k such that a(k) > γj−1 log j, fj(k; z) obeys the bounds

|fj(k; z)| ≤ K4a(k)−2−ρj−d/2,

|fj(k; z)− fj−1(k; z)| ≤ K5a(k)−1−ρj−d/2.

2.4.2 Discussion of the induction hypotheses

In this section, we discuss the induction hypotheses in some detail. We will
indicate how the induction hypotheses imply the results in Theorems 2.1–
2.2, and how the induction hypotheses can be used to obtain the bounds
on the lace expansion coefficients in Propositions 2.3–2.4. For simplicity,
we will focus on the self-avoiding walk case in Theorem 2.1, the oriented
percolation case is similar.

Induction hypothesis (H1) and convergence of zn. Note from (2.4.20)
and (2.4.26) that for z ∈ In,

|zn−1 − z| ≤ |zn − z|+ |zn − zn−1| ≤ K1βn
−(d−2)/2 +K1βn

−d/2

≤ K1β(n− 1)−(d−2)/2,
(2.4.27)

so that In ⊂ In−1. More generally, I1 ⊃ I2 ⊃ · · · ⊃ In. This is crucial, as it
allows us to use the induction hypotheses while advancing them. Also, In is
a sequence of nested closed intervals of which the width converges to zero.
It follows that there is a unique limit, which we denote by zc. In particular,
zc ∈ In for every n ≥ 1, so that all induction hypotheses apply to zc. From
(2.4.1), it then follows that zc satisfies (2.4.21). As a consequence, in the
remainder of this section, we will use the results of (H1-H4) for z = zc.

Hypothesis (H3) and Theorem 2.1. Note that, for k = 0, (H3) re-
duces to fj(0) =

∏j
i=1[1 + ri(0)]. Therefore, the bound on rj(0) in (H3)

implies that

fn(0) ≈
∞∏

i=1

[1 + ri(0)], (2.4.28)
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and this product is well-defined. We conclude that

A =
∞∏

i=1

[1 + ri(0)]. (2.4.29)

Using the fact that, after the advancement of the induction hypotheses
are completed, the sums in (2.4.17) are all well-defined, it is not hard to
conclude (2.4.17) from (2.4.1). This shows that Theorem 2.1(a) for k = 0
follows from (H3) with k = 0. We will now indicate that the statement in
(H3) for k with a(k) ≤ γn−1 log n implies Theorem 2.1(a). Since a(k) ≈
σ2 |k|2

2d , the bound a(k) ≤ γn−1 logn is implied by |k|2 ≤ γ′n−1 log n for
some γ′ sufficiently small. In particular, we can take k to be proportional
to 1√

n
, as in Theorem 2.1(a). In the latter case, one can verify that

fn(k; zc) ≈
n∏

i=1

[1− via(k) + ri(0)] ≈
n∏

i=1

[1 + ri(0)]
n∏

i=1

[1− via(k)]

≈ A

n∏

i=1

[1− via(k)] ,

(2.4.30)

where we use (2.4.29). Continuing by using 1− via(k) ≈ e−viσ
2 |k|2

2d , as well
as vi(zc) ≈ v, we arrive at

fn(k; zc) ≈ Ae−nvσ2 |k|2
2d . (2.4.31)

Theorem 2.1(a) follows by investigating the error terms in more detail,
while Theorem 2.1(b) follows by a Taylor expansion of fn(k; zc) for |k|
small, together with the bounds in (H3).

The induction hypotheses and the bounds on the lace expansion
coefficients. In order to advance the induction hypotheses, it is crucial
to have bounds on en+1 and gn+1. For this, we use Propositions 2.3 and
2.4. In order to apply these results, we need to have bounds on ‖cj‖1z

j

and ‖cj‖∞zj for all j ≤ n and for all z ∈ In. These bounds follow from
the induction hypotheses, as we will now show. The bound on ‖cn‖∞zj

c

will also prove the upper bound in Theorem 2.1(c). The lower bound in
Theorem 2.1(c) is a consequence of Theorem 2.1(a).

We now check whether the bounds (2.3.5) and (2.3.13), which are nec-
essary to apply Propositions 2.3–2.4, follow from the induction hypothesis.
For ‖cj‖1z

j , we note that by (H3) for k = 0,

‖cj‖1z
j = fj(0; z) =

j∏

i=1

[1 + ri(0)] ≤
j∏

i=1

[
1 +K3βi

−(d−2)/2
]
≤ K ′,

(2.4.32)
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when d > 4, where K ′ = 1 + CK3β ≤ 2 when β is sufficiently small.
Therefore, the first bounds in (2.3.5) and (2.3.13) follow from (H3) with
k = 0 for sufficiently small β.

Furthermore, for z ∈ In and assuming (H2), (H3) and (H4), one can see
that (see [41, Lemma 2.3]) for 1 ≤ j ≤ n,

‖D̂2fj(·; z)‖1 ≤ C(1 +K4)βj−d/2. (2.4.33)

Indeed, the bound can be obtained by splitting the integration domain into
several regions, depending on whether (H3) or (H4) applies, and depending
on the magnitude of |k|2 and the bounds on D̂(k) in (2.1.17). This gives
four regions of integration, some of which may be empty. On each of these
regions, we can use the bounds on fj provided by either (H3) or (H4), and
the bounds on a(k) provided by (2.1.17). Here we see that the bounds in
(H4) are essential in the lace expansion analysis.

When applied to self-avoiding walk, we have that

cn+1(x) ≤ (D ∗ cn)(x). (2.4.34)

Using this bound twice, we obtain that

‖cn‖∞ ≤ ‖D∗2 ∗ cn−2‖∞ ≤ ‖D̂2ĉn−2‖1, (2.4.35)

so that
‖cn‖∞zn ≤ z2‖D̂2f̂n−2(·; z)‖1, (2.4.36)

and (2.4.33) allows us to apply Proposition 2.3 with K = C(1 + K4).
This bound is crucial to obtain bounds on π̂m(k), which in turn will allow
us to advance the induction hypotheses. We conclude that the induction
hypotheses for j ≤ n imply bounds on the lace expansion coefficients π̂m(k)
for m ≤ n + 1, which are necessary to advance the induction hypotheses.
Similar arguments apply to oriented percolation.

We now sketch the advancement of (H1) and of (H3). We only give
the complete advancement of (H3) for k = 0, which gives the idea of the
proof. The advancement of the induction hypotheses (H1)–(H4) is techni-
cally quite involved, so we will not give all details.

2.4.3 Induction hypothesis (H1) advanced

By (2.4.20) and the mean-value theorem,

zn+1 − zn = −
n∑

m=2

[gm(0; zn)− gm(0; zn−1)]− gn+1(0; zn)

= −(zn − zn−1)
n∑

m=2

∂zgm(0; yn)− gn+1(0; zn),(2.4.37)
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for some yn between zn and zn−1. By (H1) and (2.4.26), yn ∈ In. Using
Propositions 2.3–2.4, in particular (2.4.5), as well as (H1), it follows that

|zn+1 − zn| ≤ K1βn
−d/2

n∑
m=2

CKβm
−(d−2)/2 + CKβ(n+ 1)−d/2

≤ CKβ(1 + CK1β)(n+ 1)−d/2. (2.4.38)

Thus (H1) holds for n+1, for β small and K1 > CK , and we have advanced
induction hypothesis (H1).

Having advanced (H1) to n+1, it then follows from (2.4.27) that I1 ⊃ I2 ⊃
· · · ⊃ In+1.

For n ≥ 0, define

ζn+1 = ζn+1(z) =
n+1∑
m=1

gm(0; z)− 1 =
n+1∑
m=2

gm(0; z) + z − 1. (2.4.39)

Note that for z = zc, by (2.4.19), we should have that

ζn+1 = −
∞∑

m=n+2

gm(0; zc), (2.4.40)

so that, when (2.4.5) holds,

|ζn+1| ≤
∞∑

m=n+2

|gm(0; zc)| ≤ K(n+ 1)−(d−2)/2. (2.4.41)

Unfortunately, the above argument cannot be made rigorous at this stage,
since we cannot derive bounds on gm for general m ≥ n from the induction
hypotheses (H1)–(H4). The following lemma, whose proof makes use of
(H1) for n+ 1, establishes (2.4.41) by only using the recursion for zn:

Lemma 2.5. For all z ∈ In+1,

|ζn+1| ≤ CK1β(n+ 1)−(d−2)/2. (2.4.42)

Proof. By (2.4.20) and the mean-value theorem,

|ζn+1| =
∣∣∣(z − zn+1) +

n+1∑
m=2

[gm(0; z)− gm(0; zn)]
∣∣∣

=
∣∣∣(z − zn+1) + (z − zn)

n+1∑
m=2

∂zgm(0; yn)
∣∣∣, (2.4.43)
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for some yn between z and zn. Since z ∈ In+1 ⊂ In and zn ∈ In, we have
yn ∈ In. Then,

|ζn+1| ≤ K1β(n+ 1)−(d−2)/2 +K1βn
−(d−2)/2

n+1∑
m=2

CKβm
−(d−2)/2

≤ K1β(1 + CCKβ)(n+ 1)−(d−2)/2.
(2.4.44)

The lemma then follows, for β sufficiently small.

2.4.4 Induction hypothesis (H3) advanced

The advancements of the induction hypotheses (H3–H4) are the most tech-
nical part of the proof. In this section, we sketch the advancement of (H3),
and complete the advancement for k = 0. The details of the advancement
can be found in [40, Section 3].

For (H3), we fix k with a(k) ≤ γ(n+ 1)−1 log (n+ 1), and z ∈ In+1. We
write

fn+1(k)
fn(k)

= 1− vn+1a(k) + rn+1(k). (2.4.45)

Then the advancement follows if rn+1(0) and rn+1(k)− rn+1(0) satisfy the
bounds required by (H3).

To begin, we divide the recursion relation (2.4.1) by fn(k), and use
(2.4.39), to obtain

fn+1(k)
fn(k)

= 1 +
n+1∑
m=1

[
gm(k)

fn+1−m(k)
fn(k)

− gm(0)
]

+ ζn+1

+
en+1(k)
fn(k)

.

(2.4.46)

By (2.4.23),

vn+1 = bn+1 − vn+1cn+1 = −σ−2
n+1∑
m=1

∇2gm(0)− vn+1

n+1∑
m=1

(m− 1)gm(0).

(2.4.47)
Thus we can rewrite (2.4.46) as

fn+1(k)
fn(k)

= 1− vn+1a(k) + rn+1(k), (2.4.48)

where

rn+1(k) = X(k) + Y (k) + Z(k) + ζn+1 (2.4.49)
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with

X(k) =
n+1∑
m=2

[(
gm(k)− gm(0)

)fn+1−m(k)
fn(k)

− a(k)σ−2∇2gm(0)
]
, (2.4.50)

Y (k) =
n+1∑
m=2

gm(0)
[
fn+1−m(k)
fn(k)

− 1− (m− 1)vn+1a(k)
]
, (2.4.51)

Z(k) =
en+1(k)
fn(k)

. (2.4.52)

The m = 1 terms in X and Y vanish and have not been included. For
simplicity, we will only sketch the advancement of the induction hypothesis
(H3) for k = 0, for which X(0) = 0.

For k = 0, we will prove that

|rn+1(0)| ≤ C(K1 + CK)β
(n+ 1)(d−2)/2

. (2.4.53)

This gives (H3) for n+1, provided we assume thatK3 À K1 and K3 À CK .
To prove the bounds on rn+1 of (2.4.53), it will be convenient to make use
of an elementary convolution bounds which states that for n ≥ 2,

n∑
m=2

1
ma

n∑

j=n−m+1

1
jb
≤ Cn−(a−1)∧b for a > 2, b > 1. (2.4.54)

The induction step. By definition,

rn+1(0) = Y (0) + Z(0) + ζn+1. (2.4.55)

Since |ζn+1| ≤ CK1β(n + 1)−(d−2)/2 by Lemma 2.5, to prove (2.4.53) it
suffices to show that

|Y (0)| ≤ CCKβ(n+ 1)−(d−2)/2, |Z(0)| ≤ CCKβ(n+ 1)−(d−2)/2.
(2.4.56)

For the bound on Y , we note that

Y (0) =
n+1∑
m=2

gm(0)
[
fn+1−m(0)
fn(0)

− 1
]
, (2.4.57)

which we can bound, using (2.4.54), to obtain

|Y (0)| ≤
n+1∑
m=2

CKβ

md/2

n∑

j=n+2−m

CK3β

j(d−2)/2
≤ CCKK3β

2

(n+ 1)(d−2)/2
, (2.4.58)
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where we use that (H3) implies that

∣∣∣∣
fn+1−m(0)
fn(0)

− 1
∣∣∣∣ =

∣∣∣∣∣∣

n∏

j=n+2−m

[1 + rj(0)]−1 − 1

∣∣∣∣∣∣
≤

n∑

j=n+2−m

CK3β

j(d−2)/2
.

(2.4.59)
Taking β small then gives the desired bound on Y (0) of (2.4.56).

For the bound on Z, we recall that Z(0) = en+1(0)
fn(0) . Using (2.4.5) and the

fact that fn(0) ≥ 1− CK3β, we obtain

|Z(0)| ≤ CCKβ(n+ 1)−d/2. (2.4.60)

This completes the proof of (2.4.53), and hence completes the advancement
of (H3) to n+1 when k = 0. The proof for k 6= 0 is similar, but substantially
more involved.

2.5 The inductive method applied to related models

In this section, we survey some results that show Gaussian behaviour for
related models, using adaptations of the inductive method. These results
show that the inductive method is a flexible tool, that can be adapted to
various different settings.

2.5.1 Diffusive behaviour for the forgetful weakly self-avoiding
walk

In this section, we describe the results in [33], in which the inductive method
was applied for the first time to a model related to self-avoiding walk.

For x ∈ Zd, we set c0(x) = δ0,x and, for n ≥ 1, p ∈ R, β ≥ 0, we define

cn(x) =
∑

ω∈Wn(x)

∏

0≤s<t≤n

(1− λstUst(ω))W (ω), (2.5.1)

where Ust is defined in (2.2.12) and

λst = λst(β, p) = 1− e−
β

|s−t|p . (2.5.2)

In this model, the walk receives a penalty e−
β

mp for every self-intersection
for which the time elapsed between the two visits of the same site is equal
to m. When p > 0, the interaction decreases with time, so that the walker
‘forgets’ its past. Therefore this model is sometimes called the forget-
ful weakly self-avoiding walk. When p = 0, we retrieve the weakly self-
avoiding walk for which every self-intersection receives a constant penalty
e−β . When β → ∞, the forgetful weakly self-avoiding walk converges to
the self-avoiding walk.
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In this section, we take D to be the nearest-neighbour step distribution,
i.e.,

D(x) =
1
2d
I[|x| = 1]. (2.5.3)

We again use the abbreviation in (2.1.22). Define

ε = p+
d− 4

2
> 0, (2.5.4)

which turns out to be the key parameter in the model. The following
theorem from [33] shows that the model is diffusive when p ≥ 0 and ε > 0:

Theorem 2.6. Suppose that either d > 4, p ≥ 0 or d ≤ 4, p > 4−d
2 . Then

there is a β0 = β0(d, p) > 0 such that for β < β0,
(a)

cn = Aµn[1 +O(n−ε)], (2.5.5)

(b)
1
cn

∑
x

|x|2cn(x) =
{
vn[1 +O(n−1∧ε)] ε 6= 1
vn[1 +O(n−1 logn)] ε = 1 , (2.5.6)

(c)
1
cn
ĉn

( k√
vn

)
= e−

k2
2d [1+O(n−δ′ )], (2.5.7)

where µ,A, v > 0 are constants (depending on d, p, β), ε is given by (2.5.4),
δ′ ∈ (0, 1∧ε) is arbitrary, and the error estimate in (c) is uniform in k ∈ Rd

provided ‖k‖1(log n)−1/2 is sufficiently small.

2.5.2 Ballistic behaviour for the forgetful weakly self-avoiding
walk

We continue with the forgetful weakly self-avoiding walk defined in the
previous section, but now study it in dimension 1 when p ≤ 1, where the
behaviour is rather different.

To be able to state that result, we define the Fourier transform of (2.1.20)
restricted to the non-negative integers to be

ĉ+n (k) =
∑

x≥0

cn(x)eikx, k ∈ [−π, π]. (2.5.8)

We will use the abbreviation

c+n = ĉ+n (0) =
∑

x≥0

cn(x). (2.5.9)

In dimension 1, when p > 3
2 the self-repellence is weak and the behaviour

is diffusive. On the other hand, when p ≤ 1, the self-repellence is strong,
and the behaviour is ballistic, as shown in [30]:
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Theorem 2.7. Fix d = 1 and p ∈ [0, 1]. Then there exist β0 = β0(p) > 0
and ε > 0 such that for β > β0,
(a)

cn =
{

Aµn[1 +O(e−εβnγ

)] for p ∈ [0, 1),
Aµn[1 +O(n−εβ)] for p = 1.

(2.5.10)

(b)
1
c+n

∑

x≥0

xcn(x) = θn[1 +O(
1
n

)]. (2.5.11)

(c)

1
c+n

∑

x≥0

x2cn(x)−
( 1
c+n

∑

x≥0

xcn(x)
)2

= σ2n[1 +O(
1
n

)]. (2.5.12)

(d)
1
c+n
e−ik θ

σ

√
nĉ+n

( k

σ
√
n

)
= e−

k2
2 [1 +O(n−α)], (2.5.13)

where γ = γ(p) = (1−p)(1+p−p2)
1+p and µ,A, θ, σ > 0 are constants (depending

on p, β), α ∈ (0, 1
2 ) is arbitrary and the error estimate in (d) is uniform in

k ∈ R provided k2 ≤ δ log n, where δ > 0 is sufficiently small.

Part (d) of Theorem 2.7 shows the central limit theorem. Indeed, we have
that conditionally on the endpoint being non-negative, it is approximately
normally distributed with mean θn and variance σ2n. We can conclude
from Theorems 2.6 and 2.7 that the dependence on p is rather sensitive.
Interestingly, it has been predicted that the scaling of the endpoint in
dimension 1 is given by ν(p) = 2 − p for p ∈ [1, 3

2 ] [7], which is linear
interpolation between the value ν = 1

2 for p = 3
2 and ν = 1 for p = 1.

The fact that ballistic behavour pertains when p = 1 and β is sufficiently
large is interesting, and it raises the question whether ballistic behaviour
persists when p = 1 for all β > 0.

The proof of Theorem 2.7 makes use of the inductive method, adapted
so as to deal with the ballistic behaviour.

2.5.3 Self-avoiding walk with nearest-neighbour attraction

An interesting application of the inductive method for the lace expansion
can be found in [63]. Ueltschi studies self-avoiding walk with nearest-
neighbour attraction, which is a model for a polymer in a repulsive solution.
The two-point function of this model is given by (2.2.11), where now we
define

Ust(ω) = I[ω(s) = ω(t)]− κI[|ω(s)− ω(t)| = 1], (2.5.14)

In this model, each nearest-neighbour contact of the path is rewarded with
a factor 1 + κ. When κ is small, it can be expected that the model is
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close to self-avoiding walk, but for κ large, it may show different scaling
behaviour.

Ueltschi [63] studies a model in which the step distribution D satisfies

inf
x,y:|x−y|=1

D(x)
D(y)

= ∆ > 0, (2.5.15)

under the assumption that

(1 + κ)2d ≤ 1 +
∆2

2d(1 + κ)2d−1
. (2.5.16)

Note that the model with D in (2.1.19) does not satisfy this assumption.
In fact, no finite range model satisfies the assumption in (2.5.15). Models
satisfying (2.5.15) must be such that the tails of D decay not faster than
exponentially.

Among other things, Ueltschi proves that the model is self-repellent in
the sense that (2.1.26) also holds for the sum over the two-point function
for self-avoiding walk with nearest-neighbour attraction and κ sufficiently
small. Moreover, he shows that under (2.5.16), and for every D satisfying
the assumptions in Section 2.1.1, that the assumptions for the general in-
ductive method in [40] are satisfied, so that the same results hold for ĉn(k)
as for the self-avoiding walk two-point function as formulated in Theo-
rem 2.1. This result is remarkable, since it applies to a model which is
not strictly self-repellent. General results for the model of (weakly) self-
avoiding walk with nearest-neighbour attraction are still missing, for ex-
ample for the model where D is given by (2.1.19), even when the attraction
parameter κ is extremely small.

2.5.4 The spread-out contact process above 4 dimensions

The contact process is a simple model for the spread of an infection in
continuous time in a static population. The spread-out contact process
is defined as follows. Let Ct ⊂ Zd be the set of infected individuals at
time t ∈ R+, and let C0 = {o}. An infected site x recovers at rate 1
independently of t, while a healthy site x is infected, depending on the status
of its neighbours, at rate λ

∑
y∈Ct

D(x − y), where λ ≥ 0 is the infection
rate and D(x− y) represents the strength of the interaction between x and
y. Let Pλ be the law of the contact process with infection rate λ. We
denote the two-point function by

τλ
t (x) = Pλ(x ∈ Ct). (2.5.17)

By an extension of the results in [3, 22] to the spread-out contact process,
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there exists a unique critical value λc ∈ (0,∞) such that

χ(λ) =
∫ ∞

0

dt τ̂λ
t (0)

{
<∞, if λ < λc,

= ∞, if λ ≥ λc,

θ(λ) ≡ lim
t↑∞

Pλ(Ct 6= ∅)

{
= 0, if λ ≤ λc,

> 0, if λ > λc,

(2.5.18)

where we denote the Fourier transform of a summable function f : Zd → R
by

f̂(k) =
∑

x∈Zd

f(x) eik·x (k ∈ [−π, π]d). (2.5.19)

We assume that D satisfies the restrictions in Section 2.1.1. The main
result for the sufficiently spread-out contact process at λ = λc for d > 4
proved in [38] is the following:

Theorem 2.8. Let d > 4 and δ ∈ (0, 1∧ ε∧ d−4
2 ). There is an L0 = L0(d)

such that, for L ≥ L0, there are positive and finite constants v = v(d, L),
A = A(d, L), C1 = C1(d) and C2 = C2(d) such that

τ̂λc
t ( k√

vσ2t
) = Ae−

|k|2
2d

[
1 +O(|k|2(1 + t)−δ) +O((1 + t)−(d−4)/2)

]
,

(2.5.20)
1

τ̂λc
t (0)

∑

x∈Zd

|x|2τλc
t (x) = vσ2t

[
1 +O((1 + t)−δ)

]
, (2.5.21)

C1L
−d(1 + t)−d/2 ≤ ‖τλc

t ‖∞ ≤ e−t + C2L
−d(1 + t)−d/2, (2.5.22)

with the error estimate in (2.5.20) uniform in k ∈ Rd with |k|2/ log(2 + t)
sufficiently small.

In [38], also an extension to a local mean-field limit for spread-out ori-
ented percolation and the contact process below and at the critical di-
mension dc = 4 is proved. In this case, these models are not believed to
exhibit the mean-field behaviour as long as L remains finite, and Gaussian
asymptotics are not expected to hold in this case. We specialize to oriented
percolation. Then, we can study oriented percolation with range L = Ln

and at times proportional to n, where Ln → ∞ as Ln = Lnb, where b is
such that bd > (4 − d)/2. A similar approach was used by Durrett and
Perkins [16], with somewhat different restrictions on b. See [38] and the
references therein for details.

The strategy of proof of Theorem 2.8 is to use time-discretization. In-
stead of investigating the contact process in continuous time, we investigate
an oriented percolation approximation, where time is in εN, and where the
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occupation probability of bonds b = ((u, t), (v, t + ε)), for u, v ∈ Zd and
t ∈ εN, is equal to

pε(v − u) =
{

1− ε when u = v,
ελD(v − u) when u 6= v.

(2.5.23)

In [3], it has been shown that the discretized contact process converges to
the contact process, and in [56], it has been shown that also the critical
point converges as ε ↓ 0. This result was extended in [38] to the statement
that the two-point function and its Fourier transform converge as ε ↓ 0
to their equivalents for the contact process. Then, Theorem 2.8 follows
from a version of Theorem 2.2 where the error terms are uniform in ε. The
time-discretization has two main advantages. The first is that it allows to
derive the lace expansion. Indeed, any derivation of the lace expansion in
continuous time is missing, and this necessitates to discretize time. The
second advantage is that the time-discretization allows to perform induction
in time along the multiples of ε.

In [38], also the continuum limit was taken, and the lace expansion re-
cursion relation in discrete time was shown to converge to a continuum
equation involving ∂tτ

λ
t (x). It is unclear, though, how this relation can be

used effectively.

2.5.5 Long-lived lattice trees above 8 dimensions

Let us introduce some notation. A lattice tree is a tree embedded in Zd

containing no cycles. We give uniform weight to lattice trees with a fixed
number of bonds, and assume that the bonds are either nearest-neighbour,
or spread-out (as in (2.1.19)). In general, the number of lattice trees of fixed
size grows exponentially with the size. Denote by tN the total number of
lattice trees of size N containing 0. Then, it is known that

lim
N→∞

t
1/N
N = λ ∈ (0,∞). (2.5.24)

In fact, (2.5.24) follows from the super-multiplicativity relation

(N +M)tN+M ≥ NtNMtM , (2.5.25)

which follows from the fact that we can glue two lattice trees together at
the rightmost corner of the one, and the leftmost corner of the other. This
shows that for the number of lattice trees τN where the left corner is located
at the origin, we have τN+M ≥ τNτM . Equation (2.5.25) follows by noting
that tN = NτN .

We define

tn(x) =
∞∑

N=1

tn;N(x)λ−N (2.5.26)
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to be the two-point function for lattice trees, where tn;N(x) is the number
of lattice trees of size N such that the length of the unique path along the
lattice tree connecting 0 to x equals n.

Lattice trees in high dimensions have been studied in [12, 13, 27], where
several versions of mean-field behaviour were proved to hold using gener-
ating function techniques. In this section, we describe the results in [43],
where a version of the inductive method is used.

Of course, the existence of the sum in (2.5.26) is a non-trivial result, and
follows from [24] for the spread-out model, and from [23] for the nearest-
neighbour model with d sufficiently large. In [43], Holmes uses the inductive
method for the lace expansion to prove Theorem 2.1 for tn(x) when the
dimension d is larger than the upper critical dimension dc = 8. In this case,
the exponent of the error term is (d − 8)/2, which is (d − dc)/2, similarly
to (2.1.30).

This application of the inductive method is somewhat unusual, since the
lace expansion coefficient π̂m(k) for lattice trees cannot be bounded by
tj(x) with j ≤ m. However, the main result in [24] is a bound in x-space
of the form (see Theorem 2.11 below)

G(x) =
∞∑

n=0

tn(x) ≈ C(|x|+ 1)−(d−2), (2.5.27)

and Holmes makes essential use of this result to be able to bound the lace
expansion diagrams, and thus to apply the inductive method.

2.6 Comparison to other methods

In this section, we describe two different methods to analyse the lace ex-
pansion equation. We have described the inductive method in detail, and
in this section, we will describe the original method used to analyse the lace
expansion, generating functions, and a method using Banach fixed point
theorems.

2.6.1 Generating functions

In the papers up to 1998, and also many papers after 1998, the lace ex-
pansion was always analysed using generating function methodology. The
main ideas are already present in [6], and we sketch the method now. The
method analyses the Green’s function Gz(x) in (2.4.8) or its Fourier trans-
form. A key ingredient in the generating function approach is the following
lemma, which replaces the consistency property that is crucial in the in-
ductive method (see also the end of Section 2.3.1):

Lemma 2.9. Let f : [z1, zc) → R and a ∈ (0, 1) be given. Suppose that

(i) f is continuous on the interval [z1, zc).
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(ii) f(z1) ≤ a.

(iii) For each z ∈ (z1, zc), if f(z) ≤ 1 then in fact f(z) ≤ a. (In other
words, one inequality implies a stronger inequality.)

Then f(z) ≤ a for all z ∈ [z1, zc).

Lemma 2.9 states that if a function is continuous on an open interval,
and an inequality implies a stronger inequality, then the stronger inequality
is true for all elements in the open interval. When applied to a generating
function, the Monotone Convergence Theorem implies that the bound is
then also true at the right-end of the interval, which is typically the radius
of convergence of the generating function. Here we are relying on the fact
that the functions f in the analysis are typically monotone increasing in
the parameter z.

The important ingredient in Lemma 2.9 is the implication that a weak
bound implies a stronger bound. The proof of this fact is then based on
the lace expansion. For example, for self-avoiding walk, we define Hz(x) =
Gz(x)− δ0,x. Then

|Π̂(2)
z (k)| ≤ ‖Hz‖∞‖Hz‖22 . (2.6.1)

Similar bounds turn out to be true for all N ≥ 1, as well as for the deriva-
tives of Π̂(N)

z (k) with respect to z. The strategy is then to choose f(z)
appropriately in such a way that the bound f(z) ≤ a implies bounds on
‖Hz‖∞ and ‖Hz‖22 where an extra factor β = L−d appears. By choosing
L large, we can then make ‖Hz‖∞ and ‖Hz‖22 small, which in turn implies
that Ĝz(k) is a small perturbation of the Fourier transform of the random
walk Green’s function. This allows for an improvement from a bound that
f(z) ≤ 1 to f(z) ≤ a when β is sufficiently small. Lemma 2.9 then implies
the improved bound for Ĝz(k) for all z ≤ zc.

The above strategy is used in all early works on the lace expansion,
and its application to self-avoiding walk in the most modern version of
the method is explained in detail in [62, Sections 3-6]. Before comparing
the generating function approach and the inductive method, we state two
results that are shown using the generating function approach. We recall
that for the nearest-neighbour model, D is given by (2.5.3).

Theorem 2.10. For nearest-neighbour self-avoiding walk and d ≥ 5, the
rescaled path

{
1√
n
ω(bntc)}

t∈[0,1]
converges weakly to a Brownian motion.

Theorem 2.10 is a seminal result. Indeed, it was shown using the lace
expansion, for which typically a small parameter is needed. In the case
of nearest-neighbour self-avoiding walk, this role of this small parameter is
played by 1/(2d), which is not very small when d = 5. In [58], it was shown
that the endpoint converges to a normal distribution when the dimension is
sufficiently high. In [59], this was improved to the scaling of the entire path
to Brownian motion, still for sufficiently high dimensions. In [26], this was
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improved to Theorem 2.10, using a computer-assisted proof. These proofs
all rely on the generating function approach, and it is not clear whether
similar results would be possible using the inductive method.

A second result proved using the generating function method proves scal-
ing in x-space for the self-avoiding walk Green’s function:

Theorem 2.11. For nearest-neighbour self-avoiding walk for d ≥ 5, or for
sufficiently spread-out self-avoiding walks for d > 4, there exists a constant
B and a δ > 0 such that

Gzc(x) =
B

σ2(|x|+ 1)d−2

(
1 +O(|x|−δ)

)
. (2.6.2)

The nearest-neighbour result is proved in [23], the spread-out result in
[24]. These results also apply to the percolation and lattice tree and animal
two-point functions.

We now discuss the generating function method. To obtain improved
asymptotic results, rather than bounds, the second step is to improve the
bounds to asymptotics when z is close to the critical value zc, in combi-
nation with a Tauberian Theorem to turn asymptotics of the generating
functions for z close to zc to asymptotics for the coefficients cn for n large.
We will now compare the generating function method to the induction
method.

The key advantage of the generating function approach is that it provides
the simplest way to prove convergence of the lace expansion. Convergence
means that the lace expansion coefficients π(N)

m are absolutely summable in
N . In particular, one can solve for Ĝz(k), as was done in (2.4.11), and this
solution writes Ĝz(k), which is divergent at the critical point for k = 0, in
terms of Π̂z(k), which is convergent at z = zc for all k. A second crucial
advantage is that the generating function method can also be used when
an explicit time variable is absent, such as for lattice trees and percola-
tion clusters. On the other hand, due to the fact that two transforms are
used (the generating function and the Fourier transform), work is needed
to go from statements on the generating function to statements on its coef-
ficients. Tauberian Theorems are hard to apply, and sometimes fractional
derivatives need to be used. This implies in particular that it is difficult to
obtain good error estimates, as we will indicate now.

The generating function method uses Tauberian Theorems to transform
statements of the form

Ĝz(0) =
Aµ

zc − z
+O

(
(zc − z)ε−1

)
, (2.6.3)

into statements of the form

cn = Aµn[1 +O(n−ε)]. (2.6.4)
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In the reverse direction, (2.6.3) immediately follows from (2.6.4), and we
will now investigate the implications of the results proved using the induc-
tive method. Indeed, Theorem 2.1 implies that

cn = Aµn[1 +O(n−(d−4)/2)]. (2.6.5)

Therefore, we have that, for z < zc = µ−1,

Ĝz(0) =
∞∑

n=0

zncn =
∞∑

n=0

A(zµ)n[1 +O(n−(d−4)/2)]

=
Aµ

zc − z
+O

(
(zc − z)(d−6)/2

)
.

(2.6.6)

By (2.4.12) and (2.4.13), this is equivalent to the statement that

1− z − Π̂z(0) = (zc − z) + Π̂zc(0)− Π̂z(0)

= (zc − z)[1 + ∂zΠ̂zc(0)] +O
(
(zc − z)(d−2)/2

)
.

(2.6.7)

However, for the reverse statement, when d = 10, we need to show that
∂2

z Π̂zc(0) = ∂3
z Π̂zc(0) = 0, and |∂4

z Π̂zc(0)| < ∞. In the inductive method,
the improved error estimates are more easily verified.

A second advantage of the inductive method is that it also allows to
prove error estimates on ĉn(k)µ−n − ĉn−m(k)µ−(n−m) that are valid for
any n and m. These bounds for self-avoiding walk are convenient to prove
convergence of network of mutually self-avoiding walks to networks of Brow-
nian motions. For oriented percolation, the bounds are essential to prove
convergence of the higher-point functions, as we will see in Section 3 below.

2.6.2 Banach fixed-point theorems

An interesting approach to convolution equations arising through the lace
expansion is given by Bolthausen and Ritzmann [5]. They consider the
lace expansion equation (2.2.9) as a fixed-point equation in an appropriately
chosen Banach space. For example, the lace expansion for cn gives

cnz
n
c = cn−1z

n−1
c +

n∑
m=2

cn−mz
n−m
c π̂m(0)zm

c , (2.6.8)

which, using (2.4.13) and abbreviating an = cnz
n
c with zc = µ−1, can be

rewritten as

an = an−1 +
n∑

m=2

(an−m − an−1)π̂m(0)zm
c − an−1

∞∑
m=n+1

π̂m(0)zm
c . (2.6.9)

Define bm = π̂m(0)zm
c a

−1
m , then (2.6.9) is equivalent to

an = an−1 +
n∑

m=2

(an−m − an−1)ambm − an−1

∞∑
m=n+1

ambm. (2.6.10)
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Define the operator F on sequences g = (gn)∞n=0 by

(Fg)n = gn−1 +
n∑

m=2

(gn−m − gn−1)gmbm − gn−1

∞∑
m=n+1

gmbm. (2.6.11)

Then, the sequence a = (an)∞n=0 is the fixed point of the operator F .
Bolthausen and Ritzmann prove that for nearest-neighbour weakly self-
avoiding walk with small enough self-repellence parameter β, the operator
F is a contraction on the sequence space where the norm is defined by

‖g‖D = g0 +
∞∑

n=1

|gn − gn−1|. (2.6.12)

Moreover, they prove that the fixed point of the operator F is unique.
In particular, this proves that a = (an)∞n=0 satisfies ‖a‖D < ∞, so that
a = (an)∞n=0 is a Cauchy sequence and consequently converges. One par-
ticular difficulty that Bolthausen and Ritzmann need to overcome is that
the operator F involves bm for all m ≥ 2, that is, π̂m(0) for all m ≥ 2. This
is overcome with an ingenious induction scheme reminiscent of the induc-
tive method. Bolthausen and Ritzmann use an extension of the above idea
to show that cn(x) satisfies certain pointwise bounds. Before stating these
bounds, let

ϕt(x) =
dd/2

(2πt)d/2
e−

d|x|2
2t (2.6.13)

denote the density of the normal distribution with mean 0 and variance t.
Then

Theorem 2.12. Let d > 4. There exists a β0 > 0 such that for all 0 ≤
β ≤ β0, there exist positive constants v, µ, A, δ and K (all depending on
d and β) such that the following statements hold as n→∞:
(a)

cn = Aµn[1 +O(n−1/2)]. (2.6.14)

(b) For all x ∈ Zd such that n− ‖x‖1 is even

∣∣∣cn(x)
cn

− 2ϕvn(x)
∣∣∣ ≤ K

[
ϕδn(x)n−1/2 + n−d/2

n/2∑

j=1

ϕδj(x)
]
. (2.6.15)

As indicated in [62, Section 6.1], the bound in (2.6.15) implies pointwise
bounds on cn(x). For example, (2.6.15) implies thatG(x) =

∑∞
n=0 cn(x)µ−n

decays proportionally to |x|−(d−2) when |x| → ∞. This allows for a proof of
Theorem 2.11 in the nearest-neighbour case for weakly self-avoiding walk.

We note further that it can be seen that (2.6.15) implies a local central
limit theorem for x depending on n such that x = O(n1/2) with |x|n−η →∞
for some η > 0. The estimate in (2.6.15) is proved by showing that the lace
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expansion recurrence relation can be rewritten as the fixed-point equation
of some operator acting on sequences of functions, and this operator is again
shown to be a contraction. The method of Bolthausen and Ritzmann is
quite innovative, for example since all estimates are performed directly in
x-space, rather than by using the Fourier transform. The Banach fixed
point method has the potential to become equally useful as the inductive
method, but, so far, the weakly self-avoiding walk is its only application.

2.7 Conclusion and open problems

In Section 2, we have sketched the inductive method applied to the lace
expansion equations for oriented percolation and self-avoiding walk. We
have indicated the different applications in the various models to which
the lace expansion has been successfully applied. There are many more
applications of the lace expansion, for example to percolation [25]. For a
more detailed account of the different results obtained using the various
approaches that can be used to analyse the lace expansion, we refer to the
extensive account [62] and the references therein.

Needles to say, there are many more models of linear structures which
are believed to have an upper critical dimension with Gaussian behaviour
expected above the upper critical dimension. Many important examples
are self-interacting stochastic processes. Examples are reinforced random
walks, random walks in random environment, loop-erased random walk,
true self-avoiding walk, etc. These models are all entirely different from
the examples sketched in Section 2, in the sense that they are not strictly
self-repellent. Indeed, denote the two-point function in such models by
qm(x), so that qm(x) is the probability that the walk is at x after m steps.
Then, it is impossible that, for all x and m,n ≥ 0,

qm+n(x) ≤ (qn ∗ qm)(x), (2.7.1)

since both sides sum up to 1. Therefore, if the bound does hold, both
sides are equal for all n,m and x, and this implies that qn(x) = q∗n1 (x),
so that the model is random walk. It would be of interest to investigate
whether inclusion/exclusion type arguments can be used for such models.
For example, the transient behaviour of edge-reinforced random walks on
the nearest-neighbour lattice in sufficiently high dimensions has not been
understood using the classical means, and it could be that lace expansion
techniques could improve our understanding of the methods. For example,
when we can show that supx∈Zd qn(x) ≤ Cn−d/2, as in Theorem 2.1(a),
then we obtain that the process visits its starting point only finitely often.
To apply the lace expansion to such self-interacting stochastic processes,
we need to overcome the difficulty that the walker decides where to step
based on its entire history, and this intricate dependence on its own past
makes an application of the lace expansion quite challenging.
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3 Higher point functions

In Section 2, we have described the results of the inductive method, fo-
cussing on self-avoiding walk and oriented percolation. Even though the
two-point function results for these two models are identical, oriented per-
colation is clearly a richer model, in the sense that clusters contain much
more information than the paths that the two-point function describes. To
describe the clusters in more detail, we will investigate the branching struc-
ture of oriented percolation clusters. One way to do this is by investigating
the higher-point functions τ (r)

n1,...,nr−1
(x1, . . . , xr−1), which are given by

τ (r)
n1,...,nr−1

(x1, . . . , xr−1) = Ppc((0, 0) −→ (x1, n1), . . . , (xr−1, nr−1).
(3.0.1)

For r = 2, we retrieve the two-point function, while for r ≥ 3, the higher-
point functions give us information on how occupied paths from a single
starting point go to several destinations. We will often abbreviate

τ~n(~x) = τ (r)
n1,...,nr−1

(x1, . . . , xr−1), (3.0.2)

where ~n = (n1, . . . , nr−1) and ~x = (x1, . . . , xr−1).
In this section, we will describe the lace expansion results for the higher-

point functions. We will prove that the Fourier transforms of these higher-
point functions, when properly rescaled, converge to some limiting objects.
In order to define these limiting objects, and to sharpen our intuition for
the behaviour of the r-point functions, we will start by investigating the
r-point functions of branching random walk.

3.1 Critical branching random walk

We start by introducing branching random walk. We follow the construc-
tion in [1] and describe some of the results derived in [31]. Branching ran-
dom walk is defined in terms of embeddings of abstract trees into Zd. The
abstract trees are the family trees of the critical branching process with a
critical offspring distribution (qm)∞m=0 with finite variance. For simplicity,
we will assume that (qm)∞m=0 has all moments.

In more detail, we begin with a single individual having ξ offspring, where
ξ is a random variable with distribution (qm)∞m=0, i.e., P(ξ = m) = qm with

∑
m

mqm = 1, σ2
q =

∑
m

m(m− 1)qm <∞. (3.1.1)

Each of the offspring then independently has offspring of its own, with the
same critical distribution (qm)∞m=0. For a tree T , with the ith individual
having ξi offspring, the probability of the tree T is equal to

P(T ) =
∏

i∈T

qξi . (3.1.2)
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The product is over the vertices of T , and we emphasize that (ξi)i∈T is
determined by the tree T .

It is important to be clear about when two trees T are the same and
when they are not. For this, we introduce a description of T in terms of
words. These words arise inductively as follows. The root is the word 0.
The children of the root are the words 01, 02, . . . , 0ξ0, where we recall that
ξ0 is the number of children of the root 0. The children of 01 are the words
011, . . . , 01ξ01, and so on. The family tree is then uniquely represented by
a set of words. Two trees are the same if and only if they are represented
by the same set of words.

We define an embedding φ of T into Zd to be a mapping from the vertices
of T into Zd such that the root is mapped to the origin and, given that i
is mapped to x ∈ Zd, the child j of i is mapped to y ∈ Zd with probability
D(y − x). We always assume that D satisfies the restrictions in Section
2.1.1.

Branching random walk is then defined to be the set of configurations
(T, φ), with probabilities

P(T, φ) = P(T )
∏

ij∈T

D(φ(j)− φ(i)). (3.1.3)

Here ij ∈ T means that j is the child of i in the tree T . In particular,
the path in Zd from the origin to φ(i), for i ∈ T , is a random walk path
of length |i| with transition probabilities given by D. Here |i| denotes the
generation of i in T , which is the same as the graph distance between the
root of T and i.

Branching random walk (BRW) is a caricature model for a population
where individuals give rise to offspring, and the offspring moves to settle
and produce offspring of its own. Needles to say, in true populations, the
behaviour of the population is much more intricate than in this model.

A convenient way to describe the distribution of a discrete random mea-
sure is by using the r-point functions. In this section, we will assume that
(qm)∞m=0 has all moments. The r-point function describe the numbers and
locations of particles present at various times. Denote the branching ran-
dom walk r-point functions by

p~n(~x) =
∑

i1,...,ir−1

P(ij ∈ T, φ(ij) = xj , |ij | = nj for each j = 1, . . . , r − 1)

(3.1.4)
where, an in (3.0.2), we abbreviate

p~n(~x) = p(r)
n1,...,nr−1

(x1, . . . , xr−1). (3.1.5)

Note that for r = 2, we are abusing notation and using pn(x) both for the
random walk two-point function and its branching random walk equivalent.
In Section 3.2, we will see that, in fact, this is not an abuse of notation.
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The r-point functions give rise to measures, and these measure are called
mean-moment measures, or just moment measures. To understand this
terminology, let n ≥ 0, and define the random measures {µn}∞n=0 by

µn(x) =
∑

i∈T :|i|=n

I[φ(i) = x]. (3.1.6)

The stochastic process {µn}∞n=0 is a Markov process of random measures
evolving in time. The measure µn describes the amount of mass and the
spatial location of the mass of the BRW at time n. We start with a single
particle at time 0 located at the origin, so that

µ0(x) = δx,0. (3.1.7)

Then, the law of the discrete measured-valued process {µn}∞n=0 can be com-
puted in terms of the joint moments E[

∏l
i=1 µmi

(yi)ai ], where l ∈ N,mi ∈
N, yi ∈ Zd, ai ∈ N. The r-point functions appear explicitly in this descrip-
tion, since

E[
l∏

i=1

µmi(yi)ai ] = p~n(~x), (3.1.8)

where (xj , nj) equals (yi,mi) precisely ai times, and r − 1 =
∑l

i=1 ai.
Thus, the joint moments of the random measures {µn}∞n=0 are equal to the
r-point functions. In the remainder of this section, we will derive recursive
formulas for p~n(~x).

We first introduce some notation. Let (fj)∞j=0 denote the factorial mo-
ments of the distribution (qm)∞m=0, i.e.,

fj =
∞∑

m=j

m!
(m− j)!

qm. (3.1.9)

When P(ξ ≤ 2) = 1, then fj = 0 for all j ≥ 3. Also, when the branching
process is critical, then f1 = 1 and f2 = σ2

q . Recall that we have assumed
that q has all moments, so that fj is finite for all j.

One way to visualize a branching random walk configuration contributing
to the BRW r-point function is as a tree of random walk paths. For this,
we will introduce the (x, n)-sites in the BRW configuration, which are the
vertices in the BRW configuration for which the spatial position is equal to
x ∈ Zd, while the tree distance from the root is equal to n. Note that there
may be more than one (x, n)-site. When considering the r-point function,
we must consider the (xj , nj)-sites in the BRW configuration, for all j ∈ J ,
where we write

J = {1, . . . , r − 1}. (3.1.10)

The path connecting the root to each of the (xj , nj)-sites are random walk
paths, possibly sharing some steps. Therefore, a configuration contributing
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to the r-point function can be thought of as a tree of random walk paths.
The r-point function is obtained by summing each configuration over the
different possible choices of the (xj , nj)-sites in the branching random walk
configuration (see also (3.1.4)), multiplied by the probability of the config-
uration. The tree of random walks picture is useful in the understanding
of the higher-point functions, as we shall see now.

We write Pj for the set of partitions of J into j non-empty subsets, where
we order the elements of ~I ∈ Pj by ordering the smallest components. Thus,
I1 contains the element 1, while I2 contains the smallest element that is
not in I1. Finally, for I = {i1, . . . , ij} ⊆ J , we write ~nI = (ni1 , . . . , nij

).
The following proposition is proved in [31]:

Proposition 3.1. For every ~x ∈ Zd(r−1) and every ~n = (n1, . . . , nr−1)
with ni ≥ 1 for all i = 1, . . . , r − 1,

p~n(~x) =
r−1∑

j=1

fj

∑

~I∈Pj

j∏
s=1

(D ∗ p~nIs−1)(~xIs
). (3.1.11)

We can interpret the different contributions in (3.1.11) in Proposition
3.1 by investigating the children of the root. The set Ii are those indices
j such that the individual located at time nj at spatial position xj is the
child of the ith child of the root. The proof of Proposition 3.1 makes this
intuition precise. Indeed, Proposition 3.1 follows by conditioning on the
number of offspring of the individual located at the origin at time zero, and
by investigating which of his/her children are ancestors of the individuals
located at xj at time nj .

We will see that two contributions to (3.1.11) are special. The first is
when Ii = J for some i, which is the case where all r points in the r-point
function are descendents of the same child of the root. In this case, all
random walks in the tree of random walks picture share the same initial
step, and the r-point function appears again in (D ∗ p~n−1)(~x). The second
is the case where I2 = J\I1. In this case, there are precisely two children
that are the ancestors of the r-points of the r-point function. Then, the
random walks to the (xi, ni)-site for i ∈ I share the same initial step, and
the random walks to the (xj , nj)-site for j ∈ J\I share the same initial
step, but these two initial steps may be different. In this case, two s-point
functions with s = |I1| + 1, respectively, s = |I2| + 1 appear. It turns out
that the other contributions constitute error terms.

The significance of (3.1.11) lies in the fact that we can use it recursively
to identify the r-point functions. For example, for r = 2, we obtain

pn(x) = f1(D ∗ pn−1)(x), so that pn(x) = fn
1 D

∗n(x) = D∗n(x),
(3.1.12)

where the last equality holds since the branching process is critical, so that
f1 = 1. In particular, the branching random walk and ordinary random
walk two-point functions agree when the mean offspring equals 1.
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A special example arises when we consider binary branching, i.e., qm =
1
2 (δm,0 + δm,2). For binary branching, f1 = f2 = 1, and fm = 0 for all
m ≥ 3, so that only the special contributions in (3.1.11) appear. Indeed,
we obtain that, writing I = I2, so that 1 6∈ I,

p~n(~x) = (D ∗ p~n−1)(~x) +
∑

I⊆J1:I 6=∅
(D ∗ p~nI−1)(~xI)(D ∗ p~nJ\I−1)(~xJ\I),

(3.1.13)
where J1 = J\{1}. Iterating the recursion yields

p~n(~x) =
∑

I⊆J1:I 6=∅

n−1∑
m=0

∑
y

D∗m(y)(D ∗ p~nI−m−1)(~xI − y)

× (D ∗ p~nJ\I−m−1)(~xJ\I − y),

(3.1.14)

where n denotes the minimal element of ~n = (n1, . . . , nr−1). Using (3.1.12),
we can write (3.1.11) as

p~n(~x) =
∑

I⊆J1:I 6=∅

n−1∑
m=0

∑
y

pm(y)(D ∗ p~nI−m−1)(~xI − y)

× (D ∗ p~nJ\I−m−1)(~xJ\I − y).

(3.1.15)

Equation (3.1.15) yields an explicit recursion for the r-point function in
terms of r, since on the right-hand side only s-point functions with s <
r appear. For different offspring distributions, (3.1.11) is not so easily
solved, but one can identify the scaling limit of p~n(~x) for general offspring
distributions, by proving that the contribution due to j ≥ 3 in (3.1.11) is
an error term. The result of this analysis is described in the next section.

3.2 Convergence of BRW r-point functions

We now identify the scaling limit of (3.1.15) when n → ∞. We note that
when the BRW is still alive at time n, then the individuals at time n have
arrived there by a random walk path of n steps. Therefore, it follows that at
time n, the spatial scaling should be proportional to

√
n. We now describe

the scaling in more detail.
Since pn(x) = D∗n(x), we have that

p̂n

( k√
σ2n

)
= D̂

( k√
σ2n

)
= e−

|k|2
2d [1 + o(1)]. (3.2.1)

It turns out that also the higher-point functions converge when we substi-
tute a Fourier variable which decays as n−1/2. To identify these limits, we
define, for l = 1,

M̂ (1)
t (k) = e−

|k|2t
2d , (3.2.2)
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so that
p̂n

( k√
σ2n

)
= M̂ (1)

1 (k)[1 + o(1)]. (3.2.3)

The recursion in (3.1.15) can be used to prove by induction on the num-
ber of points r − 1 that the rescaled r-point function n−(r−2)p̂dn~te

( ~k√
σ2n

)

converges for any r ≥ 2. To describe its limit, we introduce some more
notation. We write

kI =
∑

i∈I

ki, ~kI = (ki; i ∈ I). (3.2.4)

Then, for l > 1, the M̂ (l)

~t
(~k) are given recursively by

M̂ (l)

~t
(~k) =

∫ t

0

dt M̂ (1)
t (kJ)

∑

I⊆J1:|I|≥1

M̂ (i)

~tI−t
(~kI)M̂

(l−i)

~tJ\I−t
(~kJ\I), (3.2.5)

where i = |I|, J = {1, . . . , l}, J1 = J\{1}, t = mini ti, ~tI = (ti; i ∈ I), and
~tI − t denotes subtraction of t from each component of ~tI . The explicit
solution to the recursive formula (3.2.5) can be found in [40, (1.25)]. For
example,

M̂ (2)
t1,t2(k1, k2) =

∫ t1∧t2

0

e−
|k1+k2|2t

2d e−
|k1|2(t1−t)

2d e−
|k2|2(t2−t)

2d dt. (3.2.6)

Then, the scaling limits of the BRW r-point functions are given as follows
(see [31, Theorem 3.2]):

Theorem 3.2. Fix an offspring distribution (qm)∞m=0 such that all mo-
ments are finite, and assume that (2.1.12) holds. Then,

p̂~n(~k/
√
σ2n) = (σ2

qn)r−2
[
M̂ (r−1)

~n/n (~k) +O((n(2) + 1)−δ)
]

(r ≥ 2) (3.2.7)

holds uniformly in n ≥ n(2), where n(2) denotes the second largest compo-
nent of ~n.

We now intuitively explain this result. We can see that the recursion
formula in (3.2.5) is closely related to the one in (3.1.15). The factor nr−2

in (3.2.7) is equal to the number of summands, and can be used to replace
the sum in (3.1.15) by a Riemann sum approximation of the integral in
(3.2.5). We can also give an alternative interpretation of the power of n by
using scaling of branching random walk quantities, as we will now explain.
It is well-known that for the branching process survival probability

θn = P(∃i ∈ T : |i| = n), (3.2.8)

we have the asymptotics

lim
n→∞

nθn =
2
σ2

q

. (3.2.9)
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Then, consider ~n = (n, . . . , n) and ~k = ~0, for which we have that

p̂~n(~0) = E[Nr−1
n ], (3.2.10)

where Nn is the number of individuals alive at time n. First take r = 2,
and note that

1 = p̂n(0) = E[Nn] = θnE[Nn|Nn > 0]. (3.2.11)

Since θn decays to zero like 1/n, we must have that Nn is of the order n
when Nn > 0. This suggests that

p̂~n(~0) = E[Nr−1
n ] = θnE[Nr−1

n |Nn > 0] (3.2.12)

grows like nr−2, as in (3.2.7).
We finally indicate how we can obtain (3.2.9). We condition on the

offspring of the root to obtain, using that the third moment of (qm)∞m=0 is
finite, to obtain

θn =
∑
m

qm
[
1− P(all m children of the root die before time n)

]

=
∑
m

qm
[
1− (1− θn−1)m

]

= θn−1(
∑
m

mqm)− θ2n−1

1
2
(
∑
m

m(m− 1)qm) +O(θ3n−1)

= θn−1 − 1
2
σ2

qθ
2
n−1 +O(θ3n−1). (3.2.13)

It is not so hard to see that the above recursion relation has an asymptotic
solution given by (3.2.9). See e.g., [4, Section 8.5]. For oriented percolation,
the above argument does not really work, and in the next section, we discuss
the convergence of the critical oriented percolation r-point functions when
d > 4, in the spirit of Theorem 3.2.

3.3 The oriented percolation higher-point functions

Oriented percolation is closely related to branching random walk. Indeed,
if, for branching random walk, we let particles that arrive at the same spa-
tial location at the same time merge or coalesce, then oriented percolation
arises rather than branching random walk. Indeed, in oriented percolation,
there is dependence between the offspring of sites in the oriented perco-
lation cluster, due to the fact that different sites can infect the same site
in the next generation. We also see that the dependence or interaction is
due to loops, more precisely, due to sites that are infected at least twice
from different sources. Since loops in high dimensions are rare, it may be
expected that the scaling of the r-point functions is close to the scaling of
the r-point functions for BRW. Theorem 2.2 proves this for the two-point
function, and we now extend this analogy to all higher-point functions:
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Theorem 3.3. Let d > 4, p = pc, δ ∈ (0, 1 ∧ ε ∧ d−4
2 ), r ≥ 3, ~t =

(t1, . . . , tr−1) ∈ (0,∞)r−1, and ~k = (k1, . . . , kr−1) ∈ R(r−1)d. There is a
constant V and an L0 = L0(d) (independent of r) such that for L ≥ L0,

τ̂ (r)

bn~tc(
~k/
√
vσ2n) = nr−2V r−2A2r−3

[
M̂ (r−1)

~t
(~k) +O(n−δ)

]
, (3.3.1)

with the error estimate uniform in ~k in a bounded subset of R(r−1)d, and
where A is given in Theorem 2.2.

Theorem 3.3 can be summarised by saying that, at least on the level of
r-point function, oriented percolation above 4 spatial dimensions is a small
perturbation of branching random walk.

Theorem 3.3 is proved in [41]. The remainder of Section 3 is devoted
to an outline of the proof Theorem 3.3 for oriented percolation above 4
spatial dimensions. We first sketch the strategy of its proof. We try to
follow the strategy for branching random walk as closely as possible. For
BRW, the recurrence relation in (3.1.15) plays a central role, and the proof
for oriented percolation will involve proving a similar, though more com-
plicated, relation for critical oriented percolation. We start by introducing
some notation. Recall that J = {1, . . . , r − 1}. For I = {i1, . . . , is} ⊂ J ,
we write ~xI = {xi1 , . . . ,xis} and ~xI − y = {xi1 − y, . . . ,xis − y}. Given
a subset I ⊆ J1, we let r1 = |J \ I|+ 1 and r2 = |I|+ 1.

To visualize the higher-point functions, we again use the strings of sau-
sages picture for the connections between o and xj for the different j ∈ J .
The strings of sausages replace the random walk paths underlying the trees
of random walk paths picture for the BRW higher-point function in Section
3.1. The union of the strings of sausages from o to the various xj give rise
to a tree of sausages. Depending on the number of sausages that contain
the origin in the different strings of sausages from o to xj for j ∈ J , there
are different contributions to the r-point function. The first contribution
is when the sausage containing o is the same for all xj , which happens
precisely when the first pivotal for o −→ xj is the same for all j ∈ J , and,
intuitively, corresponds to the (D ∗ p~n−1)(~x) contribution in Proposition
3.1. A configuration of this type contributing to the three-point function
is drawn in Figure 3. The second main contribution is when there are
precisely two different sausages that contain o for the connections from
o to xj for the different j ∈ J , which happens precisely when there are
two bonds, one is pivotal for o −→ xi for all i ∈ I for some I ( J with
I 6= ∅, while the other is pivotal for o −→ xj for all j ∈ J\I. The
contribution from the cases where there are more different pivotal bonds
for the connections o −→ xj for j ∈ J will turn out to be an error term.

We will prove that the spread-out oriented percolation r-point function
satisfies a recurrence relation similar to the one in (3.1.15) for BRW. This
equation is shown using the lace expansion for the r-point function, as
derived in [40, Sections 5 and 6]. We will derive a related expansion,
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o

x1

x2

Figure 3: Schematic representation of a configuration contributing to the
three-point function.

which is closer in spirit to the lace expansion for the two-point function
as described in Section 2.2.2. This expansion contains two main steps:
the first and the second expansion, which we now briefly summarise. The
expansion is explained in more detail in Sections 3.4–3.7 below.

The first expansion deals with the case where there is a single sausage
containing o, and decouples the interaction between that single sausage
and the other sausages of the tree of sausages leading to ~xJ . We write the
subscript J explicitly in ~xJ to indicate what the components of ~xJ are.

The expansion writes τ(~xJ) in the form

τ(~xJ ) = A(~xJ) + (B ? τ)(~xJ) = A(~xJ) +
∑

v

B(v) τ(~xJ − v), (3.3.2)

where we recall that ? represents the space-time convolution

(f ?g)(x) =
∑

y∈Λ

f(y)g(x− y). (3.3.3)

We have that

B(x) = (π ?pD)(x), A(x) = π(x) (3.3.4)

where π(x) is the expansion coefficient for the two-point function as derived
in Section 2.2.2. In particular, when r = 2, (3.3.2) becomes

τ(x) = π(x) + (π ?pD ? τ)(x). (3.3.5)
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We first use the first expansion in a similar way as for BRW in (3.1.13)–
(3.1.15). For this, we define

ν(x) =
∞∑

n=0

B ? n(x), (3.3.6)

where B ? n denotes the n-fold space-time convolution of B with itself, with
B ? 0(x) = δo,x. Then (3.3.2) can be solved to give

τ(~xJ) = (ν ?A)(~xJ ). (3.3.7)

The function ν can be identified as follows. We note that iterating (3.3.7)
applied to r = 2 yields that

τ(x) = (ν ∗A)(x). (3.3.8)

Thus, extracting the n = 0 term from (3.3.6) and using (3.3.4) to write one
factor of B as A ?pD for the terms with n ≥ 1, it follows from (3.3.8) that

ν(x) = δo,x + (pD ?ν ?A)(x) = δo,x + (pD ? τ)(x). (3.3.9)

Substituting (3.3.9) into (3.3.7), we obtain

τ(~xJ) = A(~xJ) + (τ ?pD ?A)(~xJ), (3.3.10)

which recovers (3.3.5) when r = 2, using (3.3.4). We note that (3.3.10) is
reminiscent of (3.1.15), apart from the fact that A(~xJ −y), which appears
in (3.3.10), is replaced with

∑

I⊆J1:I 6=∅
(D ? τ)(~xI − y)(D ? τ)(~xJ\I − y) (3.3.11)

in (3.1.15), and the extra term A(~xJ) appearing in (3.3.10), which will turn
out to be an error term. The remainder of the expansion writes A(~xJ) in a
form that is closer to (3.3.11). In this way, we can see the lace expansion for
the higher-point function as a perturbation of the corresponding equation
for BRW.

To achieve this, the next step in the expansion is to write A(~xJ) as

A(~xJ) =
∑

I⊆J1:I 6=∅
A(~xJ\I , ~xI) + a(~xJ ; 1), (3.3.12)

where J \ I consists of those j for which the first pivotal of xj is the
same as the one for x1, while for i ∈ I, this first pivotal is different. The
contribution a(~xJ ; 1) will turn out to be an error term, and corresponds for
example to contributions where there are at least first three pivotal bonds
for the connections o −→ xj for the various j ∈ J .
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To leading order, A(~xJ\I , ~xI) represents the probability of observing
a configuration for which we have: (a) a first sausage which ends with
a bond b, which is pivotal for o −→ xJ\I ; (b) occupied paths from the
sausage leading to ~xI ; and (c) connections from b to ~xJ\I . In the second
expansion, we wish to treat these connections and the sausage as being
approximately independent. This procedure is the second expansion, and
it leads to a result of the form

A(~xJ\I , ~xI) =
∑

y1,y2

C(y1,y2) τ(~xJ\I − y1) τ(~xI − y2) + a(~xJ\I , ~xI),

(3.3.13)

where a(~xJ\I , ~xI) is an error term, and, to first approximation, C(y, z)
represents the sausage at o together with the pivotal bonds ending at y and
z, with the two branches removed. In particular, C(y, z) is independent
of I. The leading contribution to C(y, z) is pD(y)pD(z) with y 6= z,
corresponding to the case where the sausage at o is the single point o.

For r ≥ 3, we further substitute (3.3.12)–(3.3.13) into (3.3.10). Let

ψ(y1,y2) =
∑

v

pD(v) C(y1 − v,y2 − v), (3.3.14)

ϕ(r)(~xJ) = A(~xJ ) + (τ ?pD ?a)(~xJ), (3.3.15)

where

a(~xJ) = a(~xJ ; 1) +
∑

I⊆J1:I 6=∅
a(~xJ\I , ~xI). (3.3.16)

Then, (3.3.10) becomes

τ (r)(~xJ) =
∑

v,y1,y2

τ (2)(v) ψ(y1 − v,y2 − v)

×
∑

I⊆J1:I 6=∅
τ (r1)(~xJ\I − y1) τ

(r2)(~xI − y2) + ϕ(r)(~xJ),

(3.3.17)
where we recall that r1 = |J \ I| + 1 and r2 = |I| + 1, and we write the
superscripts of the r-point functions explicitly. Since 1 ≤ |I| ≤ r − 2, we
have that r1, r2 ≤ r − 1, which opens up the possibility for induction in r.
Equation (3.3.17) is closely related to the recurrence relation for the BRW
r-point functions in (3.1.11).

We recall (3.2.4) and write k =
∑r−1

i=1 ki. For I ⊆ J , we also write
nI = mini∈I ni and n = nJ . Then, the Fourier transform of (3.3.17)
becomes

τ̂ (r)

~n (~k) =
t∑

m0=0

τ̂ (2)
m0

(k)
∑

I⊆J1:|I|≥1

nJ\I−m0∑
m1=2

nI−m0∑
m2=m1

ψ̂m1,m2(kJ\I , kI)

× τ̂ (r1)

~nJ\I−m1−m0
(~kJ\I)τ̂

(r2)

~nI−m2−m0
(~kI) + ϕ̂(r)

~n (~k).

(3.3.18)
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The identity (3.3.18) is the point of departure for analysing the r-point
functions for r ≥ 3. Apart from ψ and ϕ(r), the right-hand side of (3.3.17)
involves the s-point functions with s = 2, r1, r2. Since r1 + r2 = r + 1 and
r1, r2 ≥ 2, it follows that r1 and r2 are both strictly less than r. This allows
for an analysis by induction in r, with the r = 2 case given by the result
of Theorem 2.2 for r = 2 proved in [41]. The term involving ψ is the main
term, whereas ϕ(r) will turn out to be an error term.

3.4 The first expansion for the r-point function

In this section, we derive the expansion (3.3.2) which extracts an explicit
r-point function τ(~xJ − v), and an unexpanded contribution A(~xJ). The
expansion is very close in nature to the expansion for the two-point func-
tion. There are many different possible expansions. The expansion in [40]
expands the r-point functions using the Hara-Slade expansion. In [38], we
choose a related expansion for which the bounds are more easily derived,
and for which the expansion coefficients are closely related to the lace ex-
pansion coefficients for the survival probability. See Section 3.8.2 below for
more details concerning the expansion of the survival probability. In this
section, we describe an expansion which is more based upon the inclusion-
exclusion approach for the two-point function, and we will refer to this
expansion as the Sakai expansion. We emphasize that the expansion we
sketch here is different from the ones in either [41] or [38].

The r-point function is τ(~xJ) = P(o −→ ~xJ), where we abbreviate

{v −→ ~xJ} = {v −→ xj ∀j ∈ J}. (3.4.1)

We take the first occupied pivotal bonds b for o −→ xj for all j ∈ J , if this
exists. Then, we have the partition

{
o −→ ~xJ

}
= E′(~xJ)

∪̇
⋃̇

b

{
{o =⇒ b} ∩ {b is occ. & piv. for o −→ xj ∀j ∈ J}

}
,

(3.4.2)

where

E′(~xJ) =
{
o −→ ~xJ

} ∩ {
@b : b is occ. & piv. for o −→ xj ∀j ∈ J

}
.

(3.4.3)
In particular,

E′({x1,x2}) = {o −→ x1} ◦ {o −→ x2}. (3.4.4)

Defining

A(0)(~xJ ) = P(E′(~xJ)), (3.4.5)
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we obtain

τ(~xJ ) = A(0)(~xJ) +
∑

b

P
({

o −→ ~xJ

} ∩ {o =⇒ b} ∩ {b is occ. piv. for

o −→ xj ∀j ∈ J}
)
.

(3.4.6)
To the sum in (3.4.6), we apply an inclusion-exclusion relation which is
reminiscent of (2.2.54), and reads

{b is occupied & pivotal for v −→ xj ∀j ∈ J}

= {v −→ b, b −→ ~xJ} \
{
v −→ b, b

C̃b(v)−−−−→ ~xJ

}
,

(3.4.7)

where we abbreviate
{
y

C−→ ~xJ

}
= {y −→ ~xJ} ∩

{∃ j ∈ J, y
C−→ xj

}
. (3.4.8)

Let

B(0)(y) =
∑
u

P(o =⇒ u)pD(y − u), (3.4.9)

R(1)(~xJ) =
∑

b

P
(
{o =⇒ b} ∩ {

b
C̃b(o)−−−−→ ~xJ

})
. (3.4.10)

By (3.4.7) and the Markov property, we end up with

τ(~xJ) = A(0)(~xJ ) +
∑

y

B(0)(y) τ(~xJ − y)−R(1)(~xJ). (3.4.11)

This completes the first step of the expansion.
To complete the expansion for τ(xJ ), we need to investigate R(1)(~xJ )

in more detail. Note that R(1)(~xJ) involves the probability of a subset of
{
b

C̃b(v)−−−−→ ~xJ

}
. For C ⊆ Λ, we let

E′(v, ~xJ ;C) =
{
v

C−→ ~xJ

}

∩ {
@ pivotal bond b for v −→ xj ∀j ∈ J such that v

C−→ b
}
,

(3.4.12)

E(b, ~xJ ;C) = {b is occupied} ∩ E′(b, ~xJ ;C). (3.4.13)

See Figure 4 for a schematic representation of E′(v, ~xJ ;C). Then, we have
the partition, for general sets of vertices C ⊆ Λ,

{
v

C−→ ~xJ

}
= E′(v, ~xJ ;C)

∪̇
⋃̇

b

{
E′(v, b;C) ∩ {b is occ. & piv. for v −→ xj ∀j ∈ J}

}
.

(3.4.14)
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x1 x2

C

v

Figure 4: Schematic representation of E′(v, {x1,x2};C).

Define

A(1)(~xJ) =
∑

b

P
(
{o =⇒ b} ∩ E′(b, ~xJ ; C̃b(o))

)
. (3.4.15)

Then, we obtain

τ(~xJ) = A(0)(~xJ )−A(1)(~xJ) +
∑

y

B(0)(y) τ(~xJ − y)

−
∑

b1,b2

P
(
{o =⇒ b1} ∩ E′(b1, b2; C̃b1(o))

∩ {b2 is occ. & piv. for b1 −→ xj ∀j ∈ J}
)
.

(3.4.16)

Now, we use (2.2.54) again to obtain, with

B(1)(y) =
∑

b1,b2

pD(b2)P
(
{o =⇒ b1} ∩ E′(b1, b2; C̃b1(o))

)
, (3.4.17)

to arrive at

τ(~xJ) = A(0)(~xJ)−A(1)(~xJ ) +
∑

y

[B(0)(y)−B(1)(y)]τ(~xJ − y) +R(2)(~xJ ),

(3.4.18)

where

R(2)(~xJ) =
∑

b1,b2

P
(
{o =⇒ b1} ∩ E′(b1, b2; C̃b1(o)) ∩ {

b2
C̃b2 (b1)−−−−−→ ~xJ

})
.
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This completes the second step of the expansion.
For R(2)(~xJ), we must repeat the above steps indefinitely. We omit the

details here, and only give the result of the expansion. To write down
the result of the expansion, we make a few more definitions. For ~bN =
(b1, . . . , bN) for N ≥ 1, we define recursively

Ẽ(N)

~bN
(~xJ ) = Ẽ(N−1)

~bN−1
(bN) ∩ E(bN , ~xJ ; C̃bN (bN−1)), (3.4.19)

where we let

Ẽ(0)

~b0
(~xJ ) = E′(~xJ). (3.4.20)

Using this notation, we define

A(N)(~xJ ) =
∑

~bN

P
(
Ẽ(N)

~bN
(~xJ )

)
, B(N)(y) =

∑

u,~bN

P
(
Ẽ(N)

~bN
(u)

)
pD(y − u),

(3.4.21)

which agree with (3.4.5) and (3.4.9) when N = 0, and with (3.4.15) and
(3.4.17) when N = 1, and denote their respective alternating sums by

A(~xJ) =
∞∑

N=0

(−1)NA(N)(~xJ), B(y) =
∞∑

N=0

(−1)NB(N)(y). (3.4.22)

Then, (3.3.2) follows. This completes the derivation of the first expansion,
which is an adaptation of the expansion for the oriented percolation two-
point function in Section 2.2.2.

3.5 The Factorisation Lemma

Recall (3.4.4) and (3.4.5) in the first expansion for the three-point function.
The problem in obtaining two independent two-point function from the two
disjoint connections is that these connections use bonds with the same time
coordinates. Therefore, we will never be able to use the Markov property
effectively. In order to obtain a form of independence, we will use the fact
that disjoint sets of bonds are independent. This will be formulated in the
Factorisation Lemma, Lemma 3.5, below. Lemma 3.5 and the definitions
below apply to general percolation models. Thus, for instance, they also
apply to unoriented percolation, where Λ = Zd. The Factorisation Lemma
is the key ingredient in the lace expansion for the (unoriented) percolation
two-point function, and was also used for the expansion of the oriented
percolation two-point function in [41].

To be able to state the Factorisation Lemma, we need some definitions.
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Definition 3.4. (i) Given a (deterministic or random) set of vertices A
and a bond configuration ω, we define ωA, the restriction of ω to A,
to be

ωA({x,y}) =
{

ω({x,y}) if x,y ∈ A,
0 otherwise, (3.5.1)

for every x,y such that {x,y} is a bond. In words, ωA is obtained
from ω by making every bond that does not have both endpoints in
A vacant.

(ii) Given a (deterministic or random) set of vertices A and an event E,
we say that E occurs via the bonds in A, and write E in A, if ωA ∈ E.
In other words, E occurs on the (possibly modified) configuration in
which every bond that does not have both endpoints in A is made
vacant.

The notion of “occurs via the bonds in” is convenient to describe pivotal
bonds. Indeed, it is easy to see that

{b pivotal for v −→ x}
=

{{v −→ b, b 6∈C̃b(v)} in C̃b(v)
} ∩ {b −→ x in Λ\C̃b(v)}. (3.5.2)

In terms of the above definition, we have the following Factorisation Lemma,
which will allow us to prove that the two events on the right-hand side of
(3.5.2) are independent conditionally on C̃b(v). In its statement, we write
θ(p) = Pp(|C(x)| = ∞) for the probability that the cluster of x is infinite.

Lemma 3.5 (Factorisation Lemma). For any p such that θ(p) = 0 and
any bond b, vertex v and events E,F

E
(
I[E in C̃b(v), F in Λ\C̃b(v)]

)

= E0

(
I[E in C̃b

0 (v)]E1

(
I[F in Λ\C̃b

0 (v)]
))
.

(3.5.3)

The proof follows by conditioning on C̃b(y), which is finite almost surely,
and the fact that disjoint sets of bonds are independent. Lemma 3.5 also
applies to unoriented percolation. The first version of Lemma 3.5 appeared
in [25].

In the nested expectation on the right-hand side of (3.5.3), the set C̃b
0 (v)

is random with respect to the outer expectation, but deterministic with
respect to the inner expectation. We have added a subscript 0 to C̃b

0 (v)
and subscripts 0 and 1 to the expectations on the right-hand side of (3.5.3)
to emphasize this distinction. The inner expectation on the right-hand side
effectively introduces a second percolation model on a second lattice, which
is coupled to the first percolation model via the set C̃b

0 (v).
We will refer to the bond b to which we can effectively apply Lemma 3.5

as a cutting bond.
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3.6 The first expansion for A( ~xJ)

In this section, we use the Factorisation Lemma to derive the expansion
(3.3.12). To obtain (3.3.12), we define the notion of a cutting bond for
o −→ ~xJ . To simplify the explanation, we will go to N = 0 and r = 3, and
only study

A(0)(x1,x2) = P(E′({x1,x2})) = P({o −→ x1} ◦ {o −→ x2}). (3.6.1)

We say that a bond b is the x1-cutting bond if b is the first occupied pivotal
bond for o −→ x1. We abbreviate the statement that b is the x1-cutting
bond for o −→ {x1,x2} to the statement that b is x1-cutting.

Let

Ã(0)(x1,x2) =
∑

b

P
(
{b is x1-cutting} ∩ {

(o −→ x1) ◦ (o −→ x2)
})
,

(3.6.2)

a(0)(x1,x2; 1) = P
(
{@x1-cutting bond} ∩ {

(o −→ x1) ◦ (o −→ x2)
})
.

(3.6.3)

Then, we obtain

A(0)(x1,x2) = Ã(0)(x1,x2) + a(0)
1 , (3.6.4)

where we abbreviate a(0)
1 = a(0)(x1,x2; 1). To apply the Factorisation

Lemma to Ã(0)(x1,x2) in (3.6.2), we will use a rewrite similar to (3.5.2) as
follows:

{b is x1-cutting} ∩ {
(o −→ x1) ◦ (o −→ x2)

}

=
{{o =⇒ b,o −→ x2, b 6∈C̃b(o)} in C̃b(o)

} ∩ {b occ.}
∩ {

b −→ x1 in Λ \ C̃b(o)
}
,

(3.6.5)

where, by definition, {b is occ.} is independent of the other two events on
the right-hand side.

We now apply Lemma 3.5 and (3.6.5) and the independence of the oc-
cupation status of b to extract τ(x1 − y1) from Ã(0)(x1,x2) in (3.6.2), to
obtain

Ã(0)(x1,x2) =
∑

b

pD(b)E
[
I[{o =⇒ b,o −→ x2} in C̃b(o)] τ C̃b(o)(b,x1)

]
,

(3.6.6)

where we define the restricted r-point function τC(v, ~xI) as

τC(v, ~xI) =

{
P(v −→ ~xI in Λ \ C), if v /∈ C,
0, if v ∈ C. (3.6.7)
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We note that we can omit “in C̃b(o)” in (3.6.6) by the fact that when
o −→ x2 occurs, but {o −→ x2 in C̃b(o)}c, then b ∈ C̃b(o), so that
τ C̃b(o)(b, ~x2) = 0 (see (3.6.7)). We next abbreviate C̃b = C̃b(o).

We use the inclusion-exclusion relation following from (3.6.7)

τ C̃b
(b,x1) = τ(x1 − b)− P(b C̃b

−−→ x1

)
. (3.6.8)

Similarly to the expansion for the two-point function τ(x) described in Sec-
tion 2.2.2, we can derive an expansion for the restricted two-point function
τC(v,x). Indeed, we can show that for any C ⊆ Λ, J 6= ∅, p ∈ [0, 1] and
~xJ ∈ Λ|J|, there exist A(v, ~xJ ;C) and B(v,y;C) such that

P
(
v

C−→ ~xJ

)
= A(v, ~xJ ;C) +

∑
y

B(v,y;C) τ(~xJ − y). (3.6.9)

Then, we arrive at

Ã(0)(x1,x2) =
∑
y1

B̃(0)(y1,x2) τ(x1 − y1) + a(0)
2 , (3.6.10)

where, writing, Bδ(b,y;C) = δb,y −B(b,y;C), we define

B̃(0)(y1,x2) =
∑

b

pD(b)E
[
I[o =⇒ b,o −→ x2] Bδ(b,y1; C̃

b)
]
, (3.6.11)

a(0)
2 = −

∑

b

pD(b)E
[
I[o =⇒ b,o −→ x2] A(b,x1; C̃b)

]
, (3.6.12)

where we abbreviate a(0)
2 = a(0)(x1,x2; 2). This completes the first expan-

sion for A(~xJ). The result of this expansion is that a single factor τ(x1−y1)
is extracted from Ã(0)(x1,x2). In the second expansion, we will extract a
second factor τ(x2 − y2).

3.7 The second expansion for A( ~xJ)

First, we introduce the second cutting bond for o −→ x2. Using this
notion, we then expand B̃(0)(y1,x2) and extract the factor τ(x2 − y2) for
some y2 ∈ Λ.

Recall (3.6.11). Given m ≥ 0, we say that a bond e is the (m,x2)-cutting
bond if e is the first occupied pivotal bond for o −→ x2 such that mē ≥ m.
Let a(0)

3 = a(0)(y1,x2; 3) be the contribution to B̃(0)(y1,x2) where there
does not exist a (my1

,x2)-cutting bond. Then, we obtain

B̃(0)(y1,x2) =
∑

b,e

pD(b)E
[
I[{o =⇒ b,o −→ x2}

∩ {e is (my1
,x2)-cutting}] Bδ(b,y1; C̃

b)
]

+ a(0)
3 .

(3.7.1)
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To investigate the first term in the right-hand side of (3.7.1), we will use
a rewrite that is similar to (3.6.5). Then we have

{o =⇒ b,o −→ x2} ∩ {e is (my1
,x2)-cutting}

=
{{o =⇒ b} ∩ {@(my1

, e)-cutting bond} in C̃e(o)
}

∩ {e is occ.} ∩ {
ē −→ x2 in Λ \ C̃e(o)

}
,

(3.7.2)

where, again, {e is occupied} is independent of the other two events in the
right-hand side.

We now complete the expansion for B̃(0)(y,x2). We apply Lemma 3.5
and (3.7.2) to complete the expansion for B̃(0)(y,x2). By (3.7.2) and the
independence of the occupation status of e, we obtain

B̃(0)(y1,x2)− a(0)
3

=
∑

b,e

pD(b)pD(e)E
[
I[{o =⇒ b} ∩ {@(my1

, e)-cutting bond} in C̃e(o)]

×Bδ(b,y1; C̃
b) I[ē −→ x2 in Λ \ C̃e(o)]

]
.

(3.7.3)
Note that Bδ(b,y1; C̃b) is random when mb < my1

and depends only on
bonds with time variables in between mb and my1

− 1.
Then, by conditioning on the bonds that are part of C̃b with time vari-

ables in between mb and my1
− 1, we can show that Lemma 3.5 can also

be used to factor expected values of random variables, rather than of indi-
cators. This leads to

B̃(0)(y1,x2)− a(0)
3

=
∑

b,e

pD(b)pD(e)E
[
I[{o =⇒ b} ∩ {@(my1

, e)-cutting bond}

in C̃e]Bδ(b,y1; C̃
b) τ C̃e

(ē,x2)
]
,

(3.7.4)
where we abbreviate C̃e = C̃e(o). We note that, because {o =⇒ b} and
{@(my1

, e)-cutting bond} only depend on bonds with time indices less than
or equal to me, we can again omit the ‘in C̃e’.

Finally, we use (3.6.8) and (3.6.9) to arrive at

B̃(0)(y1,x2)− a(0)
3 =

∑
y2

C(0)(y1,y2) τ(x2 − y2) + a(0)
4 , (3.7.5)

where a(0)
4 = a(0)(y1,x2; 4) is the contribution due to A(ē,x2; C̃e) and

C(0)(y1,y2) =
∑

b,e

pD(b)pD(e)E
[
I[{o =⇒ b} ∩ {@(my1

, e)-cutting bond}]

Bδ(b,y1; C̃
b) Bδ(ē,y2; C̃

e)
]
.

(3.7.6)
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This completes the expansion for B̃(0)(y,x2). Summarizing, we obtain that

A(0)(x1,x2) =
∑

y1,y2

C(0)(y1,y2) τ(x1 − y1)τ(x2 − y2) + a(0), (3.7.7)

where a(0)(x1,x2) is the contribution due to the error terms a(0)(x1,x2; 1)
and a(0)(x1,x2; 2), as well as a(0)(y1,x2; 3) and a(0)(y1,x2; 4). A similar
strategy works for A(N)(x1,x2) for N ≥ 1.

When r > 3, then we obtain a related result, where a sum over all non-
empty subsets I of J1 appears, and τ(x1 − y1) in (3.7.7) is replaced by
τ(~xJ\I −y1) and τ(x2−y2) by τ(~xI −y2). This completes the description
of the expansion for the r-point function τ(~xJ) as formulated in (3.3.17).

3.8 Related work

3.8.1 The contact process

In Section 2.5.4, we have described the results from [37], where Gaussian
scaling of the two-point function in Theorem 2.8 was proved for the critical
spread-out contact process above 4 spatial dimensions.

In [39], which is in preparation, the aim is to extend this result to conver-
gence of the r-point functions. The methodology should be closely related
to the one in [40], but the details change significantly due to the discretiza-
tion procedure.

3.8.2 The survival probability and the incipient infinite cluster

Denote by
θn = Ppc(∃x ∈ Zd : (x, n) ∈ C(0, 0)) (3.8.1)

the oriented percolation survival probability. In [35, 36], which are in prepa-
ration, the survival probability is investigated for critical spread-out ori-
ented percolation above 4 spatial dimensions. The papers [35, 36] aim to
answer the question posed in [34], where it was shown that the incipient
infinite cluster measure for spread-out oriented percolation above 4 spatial
dimensions exists.

The incipient infinite cluster (IIC) describes the spatial structure of large
critical clusters. In [34], two constructions where given for the IIC, and
these two constructions were shown to agree under the assumption that

θn ∼ 1
Bn

. (3.8.2)

In [35, 36], we intend to prove (3.8.2), by an analysis based on induction
[35] on a recursion relation for θn derived using the lace expansion [36].
This lace expansion is a point-to-plane expansion, rather than a point-to-
(many) point(s) expansion which is derived for the higher-point functions
in [40]. This expansion is more difficult than the one for the higher-point
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functions in [40]. Peculiarly, it turns out that the expansions for the r-point
function and the expansion for the survival probability can be chosen such
that the lace expansion coefficients are (up to a constant factor) identical,
which will be shown in [38]. In particular, this implies that the constant B
in (3.8.2) is given by

B =
AV

2
. (3.8.3)

This equality is also of independent interest, since it implies convergence
of the rescaled particle numbers 1

nNn, where

Nn = #{x : (0, 0) −→ (x, n)}, (3.8.4)

conditionally on Nn > 0, weakly converges to an exponential random vari-
able with parameter λ = 2

A2V = 2
AB . See [34, Theorem 1.5]. In [34, Section

5.3], an independent proof of (3.8.3) is given using the scaling of the r-point
functions.

3.8.3 Lattice trees

For lattice trees, similar results for the r-point function can be obtained
using the inductive method, as described in Section 2.5.5, together with
an analysis of the r-point function using induction on r. This is the main
content of [43]. In a way, we can think of the proof of convergence described
in this section as a general strategy to prove convergence of the r-point
functions, which can be adapted to deal with other settings, such as lattice
trees and the contact process. We will describe related results on scaling
of lattice trees in Section 4.4.2 below.

4 Super-Brownian motion

4.1 Introduction

In the previous section, we have described the convergence of the critical
BRW and oriented percolation r-point functions to some limiting objects.
Naturally, one expects these limiting objects to be related to a limiting
stochastic process. This is the main message in this section. In the following
discussion, for simplicity, we will only consider BRW.

In the scaling limit, time is sped up with a factor n. Therefore, between
time t and t+ ε, there are of the order εn time units or generations of the
BRW. Since for BRW, the particles branch and die at every integer time,
this means that the scaling limit should branch at infinitesimal times. Fur-
thermore, for BRW, the children move away from their ancestors, in such
a way that the spatial locations of the ancestors of a single individual are
random walks. When scaled appropriately, these paths should converge
to Brownian motion paths. The scaling limit of BRW thus describes a
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cloud of individuals that branch on an infinitesimal scale, and move dif-
fusively. Such processes are called super-processes, and super-Brownian
motion (SBM), for which the movement is Brownian, is the prime example
of such a process. In the following section, we will describe how super-
Brownian motion can be obtained as the scaling limit of BRW, when it is
appropriately scaled. Super-processes describe the movement of a popu-
lation of individuals, and take values in the space of measures. Since the
individuals these measures describe move diffusively, super-processes are
sometimes called measure-valued diffusions.

Super-processes have received considerable attention in the probabil-
ity community in the past decades. See e.g. [14, 18, 19, 48, 53] and the
references therein. Super-Brownian motion is the principle example of a
measure-valued Markov process in a similar way as Brownian motion is the
principle example of a diffusion. As a consequence, one can expect super-
Brownian motion to arise as a universal scaling limit for weakly interacting
branching and moving population models, in a similar way as Brownian
motion arises as the universal scaling limit of weakly interacting random
paths. See [61] for an excellent nontechnical introduction describing scaling
limits and their relations to super-processes.

There are two natural versions of a super-process. The first is when the
initial population is described by a measure. In this case, a super-process
is a continuous-time Markov process on the space of measures. The second
is when we investigate the behaviour of the offspring of a single individ-
ual. Roughly speaking, the case where the initial population is a measure
can be seen as the sum of many independent super-processes describing
the single individuals, so that the case where we start with a single in-
dividual is called the canonical measure. In fact, any super-process is an
infinite divisible process, and the canonical measure of the super-process is
the usual canonical measure of the infinite divisible process as for example
defined by Kallenberg [44]. The canonical measure of super-Brownian mo-
tion is described in more detail in [48, 53], and describes the structure of
a single continuum tree embedded into Rd where particles undergo critical
branching at any time scale, and move according to Brownian motions.

The canonical measure is an illusive object, since its law is not a proba-
bility measure. The reason is that if we start with a single individual and
critical branching, then the branching process will die out with high prob-
ability before the convergence to the super-process sets in. Therefore, the
scaling limit has an infinite atom at the empty measure. However, when we
look at events which imply that the super-process is alive at some macro-
scopic time t > 0, then the measure of the event is uniformly bounded. To
study the scaling limit, we can consider the conditional law of the process
up to some time t when we restrict to configurations of the process that
are alive at time t.
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4.2 The canonical measure of Super-Brownian motion

We first discuss a construction of the canonical measure as a scaling limit
of critical branching random walk to explain the canonical measure in more
detail. For simplicity, we take an offspring distribution for which σq = 1.
Let n ≥ 0, and recall the definition of the random measures {µn}∞n=0 in
(3.1.6)–(3.1.7).

We expect that, as n→∞, the process {µn}∞n=0 has a scaling limit. The
difficulty in describing this scaling limit, however, is that

P(∃x ∈ Zd such that µn(x) 6= 0) = P(∃i ∈ T : |i| = n) = θn, (4.2.1)

so that by (3.2.9), with probability close to 1 for n large, the random
measure µn has mass zero. We are interested in the scaling limit of a single
critical BRW, and, in particular, in large realizations of T for which µn is
not identically equal to 0. We now describe the construction of the scaling
limit in detail.

We define, for t ≥ 0 and x ∈ Rd, the random measure-valued Markov
process {Xn,t}t≥0 by defining its expected value of a bounded function
f : Rd → R as

Xn,t(f) =
1
n

∑

x∈Zd

f(
√
nσx)µbntc(x). (4.2.2)

We first motivate the scaling in (4.2.2), which we can alternatively write
as

Xn,t(f) =
1
n

∑

y∈Zd/
√

nσ2

f(y)µbntc(
y√
nσ2

). (4.2.3)

It turns out that when there is a particle alive at time bntc, then there are
in fact many particles alive at the same time. Indeed, it can be shown that
conditionally on Nm ≥ 1, the random variable Nm

m weakly converges to an
exponential random variable. See [65] or [53, Theorem II.1.1(b)], as well as
Section 3.8.2 above. We are particularly interested in branching processes
that are alive at time proportional to n, so that we should normalise the
number of particles with a factor of 1

n . This explains the factor 1
n in (4.2.3).

To explain the scaling in the spatial coordinate, we note that when there
is a particle present at some site z at time proportional to n, then this
particle has arrived to z by a random walk path of length proportional to
n. Therefore, we can expect that z is proportional to

√
σ2n. This explains

the scaling in (4.2.3). We now describe the scaling limit.
For an event E that is a measurable subset of the space of measure-valued

paths on Rd, we take the limit

lim
n→∞

nP({Xn,t}t≥0 ∈ E). (4.2.4)

It turns out that the above limit exists as an element of [0,∞] (see e.g.,
[53, Theorem II.7.3(a)]), and is by definition equal to the measure of the
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indicator of the event E under the canonical measure of super-Brownian
motion. We denote by N0 the canonical measure of super-Brownian motion,
so that the above limit is equal to N0(I[E]). The canonical measure is a
measure on continuous paths from [0,∞) into non-negative finite measures
on Rd. The canonical measure is an elusive object, as it is not a probability
measure, but rather a σ-finite, non-negative measure. For simplicity, we
take N0 to be normalised to have unit branching and diffusion rates, which
corresponds to σ2

p = 1 for BRW. The factor n in (4.2.4) explains that the
measure N0 is not a probability measure, but rather a σ-finite measure.

For a measure µ on Rd, we write µ(1) =
∫
Rd 1dµ for its total mass. We

write {Xt}t≥0 for the process of non-negative measures under the canonical
measure N0. Note that when E = {Xt(1) > 0}, then by (3.2.9),

N0(I[Xt(1) > 0]) = lim
n→∞

nP(Xn,t(1) > 0) = lim
n→∞

nθbntc =
2
σ2

q t
=

2
t
,

(4.2.5)
since we have assumed that σq = 1. Therefore, N0 is a finite measure on
events E that imply that Xt(1) > 0 for some t > 0.

We now discuss this construction of the canonical measure and its re-
lation to super-Brownian motion started from a proper initial measure.
Often, super-Brownian motion is considered as starting from a proper ini-
tial measure. This corresponds to a different scaling limit. Indeed, let the
measure µ0,n be such that µ0,n(x) takes integer value for every x ∈ Zd, and
let

νn(x) =
1
n
µ0,n(bx

√
σ2nc). (4.2.6)

We assume that νn is a measure that weakly converges to some limiting
measure ν. Then, we let (T (j)

x , φ(j)
x ) for j = 1, . . . , µ0,n(x) be µ0,n(x) inde-

pendent branching random walks started at x, so that φ(j)
x (0) = x, where

0 is the root of the tree T (j)
x . Then we consider the evolution of these inde-

pendent BRW’s from the various starting points, and take the sum of the
particle numbers of the different trees. More precisely, the spatial locations
of the branching random walk particles at time m with initial measure µn

are then given by

µm,n(x) =
∑

y∈Zd

µ0,n(y)∑

j=1

∑

i∈T
(j)
y :|i|=m

I[φ(j)
y (i) = x]. (4.2.7)

In words, the random variable µm,n(x) equals the number of particles that
are present at time m at the location x when we start with initial measure
µ0,n. Then, we define

Xn,t(f) =
1
n

∑

x∈Zd

f(
√
nσx)µbntc,n(x). (4.2.8)
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Thus, in particular, Xn,0(f) = νn(f). Denote the law of {Xn,t}∞t=0 by P(n)
νn

.
Then, the limit

lim
n→∞

P(n)
νn

({Xn,t}t≥0 ∈ E) (4.2.9)

exists. This limit is

Pν({Xt}t≥0 ∈ E), (4.2.10)

where Pν is the law of super-Brownian motion with initial measure ν.
We can think of the law P(n)

νn
as being described by the evolution of in-

dependent branching random walk copies, where the copies are located at
positions described by the initial measure νn. In a similar way, we can
think of Pν as being described by (infinitely) many independent copies of
canonical measures according to the initial measure ν (see e.g., [53, Theo-
rem II.7.2]). This intuitive picture can be made precise by noting that Pν is
infinitely divisible, and using the general notion of infinitely divisible mea-
sures in e.g., [44]. In fact, in the terminology of infinite divisible measures,
the canonical measure of super-Brownian motion is the canonical measure
for the infinitely divisible measure Pν . See e.g. [15, Section 1.3, and, in
particular, Corollary 1.3] for more details.

On the other hand, we can also describe the canonical measure in terms
of SBM by using the Markov property. Indeed, the law of {Xs+t}∞t=0 given
Xs is the same as the law of {Xt}∞t=0 under PXs . This shows that the
laws of SBM with a proper initial measure and the canonical measure are
intimately connected.

In this section, we describe the moment measures of the canonical mea-
sure of super-Brownian motion. We first discuss what these moment mea-
sures are and how they can be characterized.

As we will explain in more detail below, moment measures describe the
finite-dimensional distributions of a super-process. Indeed, a measure can
be determined by its expectation of a sufficiently rich class of bounded
continuous functions. For a random measure Xt, we can thus determine
the law of Xt by describing the laws of Xt(f) for a sufficiently rich class of
continuous functions, where

Xt(f) =
∫

Rd

f(x)Xt(dx). (4.2.11)

We will be using Fourier transforms, so that we take as a class of continuous
functions {fk}k∈Rd , where fk(x) = eik·x, and k · x is the inner product
between x and k. Thus, in order to determine the law of super-Brownian
motion, it suffices to know the law of {Xs(fk)}s≥0,k∈Rd . This law will be
uniquely determined by the finite-dimensional distributions {Xsi(fki)}r

i=1

for any s = (s1, . . . , sr) and k = (k1, . . . , kr). These laws, in turn, will
be uniquely determined in terms of the joint moments, that is, for every
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vector (a1, . . . , ar) ∈ Nr,

N0

( r∏

i=1

Xsi(fki)
ai

)
= N0

( l∏

j=1

Xtj (fkj )
)
, (4.2.12)

where l = a1 + . . .+ ar, and the components of (t1, . . . , tl) are equal to sj

precisely aj times. Thus, we are led to investigate

M̂ (l)

~t
(~k) = N0

( l∏

j=1

Xtj
(fkj

)
)

= N0

( ∫

Rdl

Xt1(dx1) · · ·Xtl
(dxl)

l∏

j=1

eikj ·xj
)
.

(4.2.13)
These are the Fourier transforms of the moment measures of the canon-
ical measure of super-Brownian motion. It turns out that these moment
measures are given by (3.2.5)

Since the moment measures determine the law of the super-process, The-
orem 3.2 tells us that the Fourier transforms of the BRW moment measures
converge to those of super-Brownian motion. This leads to the following
corollary:

Corollary 4.1. The rescaled probability measure nP(n)({Xn,t}t>0 ∈ ·) con-
verges to N0 in the sense of convergence of finite-dimensional distributions.

We first give some remarks on extensions and implications of the above
result:

Remark 4.2. (i) For BRW, it can be shown that the measures
P(n)({Xn,t}t>0 ∈ ·) are tight, so that the convergence in finite-di-
mensional distribution actually implies weak convergence on the ap-
propriate function space.

(ii) Since the measure P(n)
νn

is obtained as the independent sum of the
BRWs started from the measure νn, the above results can be extended
to prove weak convergence of the law P(n)

νn
to the law Pν .

(iii) The canonical measure of super-Brownian motion is not a probabil-
ity measure. Indeed, since critical BRW dies out with high proba-
bility, the canonical measure of super-Brownian motion has an in-
finite atom at the empty measure, which corresponds to all BRW
configurations that have not survived to a macroscopic time of or-
der n. This means that we cannot quite understand the convergence
of nP(n)({Xn,t}t>0 ∈ ·) to N0 as the weak convergence of a usual
stochastic process. One possible way of interpreting the convergence
result is through conditioning on survival. Indeed, we can investigate
the laws

P(n)
(
{Xn,s}s≥0 ∈ ·

∣∣Xn,t(1) > 0
)
, (4.2.14)
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which is a measure valued process which is forced to survive up to
macroscopic time, and investigate whether

P(n)
(
{Xn,s}s≥0 ∈ E

∣∣Xn,t(1) > 0
)
→ N0(I[E]I[Xt(1) > 0])

N0(I[Xt(1) > 0])
.

(4.2.15)
The measure E 7→ N0(I[E]I[Xt(1)>0])

N0(I[Xt(1)>0]) is a probability measure, and
the corresponding intuition is that BRW conditionally on survival
up to time nt, when appropriately scaled, converges to the canonical
measure of super-Brownian motion, conditioned to survive up to time
t.

We next investigate the convergence of the appropriately scaled oriented
percolation clusters to the canonical measure of super-Brownian motion.
For spread-out oriented percolation above 4+1 dimensions, the scaling of
the moment measures follows from Theorem 3.3. To formulate it, we define
the measure

µn(x) = I[(x, n) ∈ C(0, 0)], (4.2.16)

and define its rescaled version Xn,t to be the random measure with

Xn,t(f) =
1
n

∑

x∈Zd

f(
√
nσx)µbntc(x). (4.2.17)

Similarly to the BRW case, the measure Xn,t is a discrete measure on Rd.
We will write N0,ρ for the canonical measure of SBM when the branching
rate is equal to ρ, which is the limit of critical BRW when the variance of
the branching law is equal to ρ, rather than 1. Theorem 3.3 leads to the
following convergence towards super-Brownian motion result:

Corollary 4.3. Let d > 4, p = pc. The rescaled probability measure
nA−1Ppc({Xn,t}t>0 ∈ ·) converges to N0,A2V in the sense of convergence
of finite-dimensional distributions.

4.3 Future challenges and open problems for spread-
out oriented percolation

4.3.1 Weak convergence towards super-Brownian motion

As explained in Remark 4.2(i), one can show for BRW that the measures
nP(n)({Xn,t}t>0 ∈ ·) are tight. Weak convergence is much stronger than
convergence of the finite dimensional distributions, as weak convergence of
the process implies convergence of all continuous functionals of the process

Tightness arguments for BRW typically use martingale methods, see e.g.,
[53, Section II.4]. In particular, tightness arguments are typically not based
upon properties of the higher-point functions. For oriented percolation,
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it is unclear how martingale methods should be used, and the necessary
criteria for the higher-point functions require detailed bounds on differences
of the five-point function at different time points. The problem of proving
tightness for the rescaled oriented percolation cluster is still open.

4.3.2 Convergence of multiple clusters

As explained in Remark 4.2(ii), for BRW, the convergence of BRW’s start-
ing from a single individual to the canonical measure of super-Brownian
motion imply the convergence of BRW’s started from many individuals to
super-Brownian motion started in the weak limit of the starting measure.
The proof of this fact relies solely on the fact that the BRW’s started in
different spatial locations are independent.

For oriented percolation, on the other hand, when we would be interested
in the the union of clusters of several points, this independence does not
follow. More precisely, take a certain set A ⊆ Zd, and consider

C(A) = ∪a∈AC(a, 0). (4.3.1)

We will be interested in the scaling limit of the rescaled cluster. In this
case, the starting measure is equal to

µn,0(x) =
1
n
I[x ∈ A], (4.3.2)

and the measure at time m is

µn,m(x) =
1
n
I[(x,m) ∈ C(A)]. (4.3.3)

Then, the rescaled measure is again described by

Xn,t(f) =
1
n

∑

x∈Zd

f(
√
nσx)µbntc(x). (4.3.4)

In order to have convergence, we should have convergence at time 0. There-
fore, the set A = An should be picked such that |An| = n and, for every
subset B ⊆ Rd,

Xn,0(B) =
1
n

#{y ∈ Zd :
y√
σ2vn

∈ B} (4.3.5)

converges to ν(B) for some initial measure ν. It is natural to conjecture
that the process {Xn,t} converges to super-Brownian motion started with
initial measure Aν and branching rate ρ = A2V .

For oriented percolation, the particles are not independent, but rather
positively dependent, in the sense that, by the FKG-inequality, the event
that (x,m) ∈ C(A) makes it more likely that (y, l) ∈ C(A). It would be of
interest to prove the convergence towards super-Brownian motion starting
from a general initial measure.
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4.3.3 Convergence of the rescaled clusters conditioned on sur-
vival

In Remark 4.2(iii), the convergence of a single critical BRW to the canoni-
cal measure of super-Brownian motion was interpreted by investigating the
random measures describing the location of the particles alive conditionally
on the BRW to be alive at time tn. It was noted that this conditional pro-
cess is a measure-valued stochastic process, that, when (4.2.15) holds, con-
verges as a stochastic process to the canonical measure of super-Brownian
motion conditioned to survive up to time t. It would be interesting to prove
this statement for the rescaled oriented percolation clusters above 4 spatial
dimensions. We note that this approach can only be successful if we know
the scaling of the survival probability as discussed in Section 3.8.2.

4.3.4 Integrated super-Brownian excursion

Integrated super-Brownian excursion can be obtained as follows. Let

E =
{ ∫ ∞

0

Xt(1)dt = 1
}

(4.3.6)

be the event that the total mass of super-Brownian motion is equal to 1.
Then, integrated super-Brownian excursion (ISE) is the process {Xt}t≥0

under the canonical measure of super-Brownian motion, conditioned on the
event E. Therefore, it is the canonical measure of super-Brownian motion
conditioned on the integral of its total mass being equal to one.

More formally, the measure of ISE corresponds to the measure N0(·I[E])
N0(I[E]) .

Naturally, the event E has measure zero under N0. However, we can make
sense of this by conditioning on

Eε =
{

1 ≤
∫ ∞

0

Xt(1)dt ≤ 1 + ε
}
, (4.3.7)

which turns out to have finite and positive measure under N0, and then
taking the limit of ε ↓ 0.

ISE can also be obtained as the scaling limit of BRW, see [1]. Indeed,
we can condition on the size of the family tree to be equal to N , and take
an appropriate scaling limit. It turns out that, when BRW lives until time
n, the number of individuals in each generation is typically proportional to
n. As a consequence, the size of the family tree is typically proportional to
n2, and conditioning on the family tree to be equal to N is comparable to
conditioning the branching process not to have died out at time

√
N . Since

distances in the cluster when it has survived up to time n are proportional
to
√
n, this means that the spatial scaling when conditioning on the family

tree to have size N are 4
√
N .

There are many established connections between ISE and statistical me-
chanical models above the upper critical dimension. See Section 4.4.2 and
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4.4.3 below. It is natural to conjecture that for oriented percolation above
4 spatial dimension and p = pc, when we condition the cluster of the origin
to have size N , and rescale time by

√
N and space by 4

√
N , the rescaled

cluster converges to ISE. See also [40, Section 1.3.2], where this conjec-
ture is formulated. However, this is a difficult problem. For one, since we
condition on the size of the cluster to be equal to N , we should know the
asymptotics of the law of the cluster size distribution. Similarly to BRW,
it should be the case that

Ppc
(|C(0, 0)| = N) ≈ CN−3/2, (4.3.8)

for some constant C, but, so far, (4.3.8) remains unproven for oriented
percolation.

4.3.5 Other models

There are many more models where branching occurs and connections to
super-processes can be expected. Examples are uniform spanning forests,
invasion percolation, forest fire models, etc. For some of these models, one
can expect that above a certain critical dimension, super-Brownian motion
arises as the scaling limit. Possibly the lace expansion can be used to make
this connection precise. However, the difficulty lies in establishing the lace
expansion with appropriate bounds on the coefficients. Naturally, conver-
gence towards super-processes is much more involved than convergence of
the two-point function, so that it is natural to start by investigating the
two-point functions. See also Section 2.7 for a discussion of the related
problem for the two-point function.

4.4 Results for related models

There are several related results that prove relations between the scaling
limits of interacting particle systems or statistical mechanical models. In
this section, we discuss the voter model, the contact process, lattice trees
and percolation.

4.4.1 The voter model and the contact process

In [9], it is shown that the rescaled voter model converges to super-Brownian
motion. In the voter model, the variables ξt(x) denotes the opinion of x at
time t, where the ‘opinions’ are denoted by 0 and 1. The dynamics is such
that neighbours adopt each other’s opinion at rate 1 according to some
transition probability, which we denote by D.

We start with an initial measure of all individuals having opinion 0, while
a finite number of individuals have opinion 1, and are interested in whether
the opinion 1 survives, and if so, where the individuals with opinion 1 are
located. It is shown in [9] that if we rescale the particle numbers in the
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same way as in (4.2.8), then for d ≥ 2, the rescaled process converges to
super-Brownian motion for the finite range model (for example, the nearest-
neighbour model). Since weak convergence to SBM is proved, also the issue
of tightness is resolved for the voter model.

In [9], also results concerning the convergence of BRW to super-Brownian
motion can be found, as well as results for the contact process where the
range of D grows simultaneously with time. The method to prove these
results rely on martingale techniques, rather than on the use of the lace
expansion. For the voter model, the proof crucially relies on the fact that
the dual process is coalescing random walks. In [10], the weak convergence
of the voter model is also used to compute the scaling of the survival
probability, which is the probability that opinion 1 survives up to time
t, when at time 0 there is a single individual with opinion 1, and a version
of (3.8.2) for the voter model is shown there.

Similar results are shown in [16] and [11]. In [16], the contact process
was studied above 2 dimensions when the range and time grow simultane-
ously. Again the proof relies on martingale methods. In [38], these results
are expected to be extended to the finite-range contact process above 4
dimensions, using the lace expansion and following the strategy described
in Section 3. We emphasize, however, that in [9] and [16], weak conver-
gence results are proved, while in the strategy explained in these notes,
only convergence of finite dimensional distributions is obtained. In [11],
the Lotka-Volterra model was studied, which is a certain predator-prey
model. Finally, see also [54] for an expository paper describing super-
processes and convergence results to super-Brownian motion, focussing on
martingale methods.

4.4.2 Lattice trees

There are many connections between lattice trees and super-Brownian mo-
tion. In [12, 13], it was shown that the r-point functions of lattice trees
of fixed size, converge to those of ISE. The statements are complete when
dealing with the r-point functions where the number of steps between 0
and x along the tree is not fixed, and there are partial results when this
number is fixed and scales with the size of the lattice tree.

There is current progress in understanding the connection to SBM [43],
see also Section 2.5.5. For lattice trees, similarly to Corollaries 4.1 and 4.3,
it can be shown that the finite-dimensional distributions for lattice trees,
when appropriately scaled, converge to those of the canonical measure of
SBM.

4.4.3 Percolation

Unlike the models described in Sections 4.4.1, percolation does not have an
obvious time variable, so that it is not immediately obvious in what way
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the rescaled clusters should converge to SBM above 6 dimensions. There
are several papers describing the critical exponents for percolation above 6
dimensions, as well as aspects of its scaling limit. See [25, 28, 29] for details.
In the latter paper, the connection to integrated super-Brownian excursion
(ISE) is explored, and, in particular, (4.3.8) is shown to hold for nearest-
neighbour percolation in sufficiently high dimensions. Also, convergence of
the percolation two- and three-point functions to the ones of ISE is proved
in [29]. The proofs are based on generating function methodology and rely
on the lace expansion. It would be of interest to extend these results to
convergence to the canonical measure of super-Brownian motion, when the
time variable is the shortest-paths distance along the cluster of the origin.
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