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Abstract: The development of the notion of space in geome-
try is traced from the early axiomatization in Euclid’s Elements
over the discovery of non-Euclidean geometries to geometry of
manifolds in relativity theory and in gauge and string theories
in contemporary physics. The notion of space is considered in
a historic-philosophical perspective including a short discussion
of the contributions of artists to visualization of spatial objects.

Kurzreferat: Uber den Raumbegriff in der Geometrie. Die
Entwicklung des Raumbegriffs in der Geometrie wird skizziert
von der frithen Axiomatisierung in den Elementen von Euklid
uber die Entdeckung nichteuklidischer Geometrien zur Geome-
trie der Mannigfaltigkeiten in der Relativititstheorie sowie in der
Eichtheorie und in der Stringtheorie der modernen Physik. Der
Raumbegriff wird in einer historisch-philosophischen Perspek-
tive betrachtet, wobei auch Beitrage von Kinstlern zur Visuali-
sierung rdumlicher Objekte angesprochen werden.

ZDM-Classification: A30, E20, G10

What is space? There is no immediate answer to this ques-
tion. For the layman space is where we live, or slightly
more sophisticated, where we exist and have our sensa-
tions. For a philosopher, the nature of space is a challeng-
ing problem. In the fundamental philosophical work Kri-
tik der reinen Vernunft in 1781, Immanuel Kant considers
space and time to be a priori given forms of appearance
(““Anschauungsformen”) necessary for having sensations.
What is space, or, more generally, a “space”, for a math-
ematician, and more precisely for a geometer? This is the
question to be considered here, in a historic-philosophical
perspective.

1. Euclid’s Elements: Axiomatisation of the notion of
space

Geometry derives from the Greek word geometria, which
means measurement of land. The word was used by the
Greek historian Herodotus in the fifth century B.C. in his
great epic on the Persian wars in which he writes that
“geometria” was used in ancient Egypt to find the right
distribution of land after the floods of the Nile.

As a framework for the description and measurement of
figures, geometry was developed empirically in the early
cultures of Egypt and Mesopotamia (often identified with
Babylonia) several thousand years ago. Geometry as pure
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mathematics, which encompasses a collection of abstract
statements about ideal figures and proofs of these state-
ments, was founded around 600 B.C. in the Greek culture
by Thales, who according to legend proved several theo-
rems in geometry.

Classical Greek geometry has persisted mainly through
the famous 13 books written by Euclid around 300 B.C.
which are known as Euclid’s Elements. In these books the
mathematical and in particular the geometrical knowledge
possessed by the Greeks at the time of Euclid is sum-
marized and systematized in such a clear way that the
exposition has put a stamp on mathematical writings ever
since. The geometrical content is now known as Euclidean
geometry.

Other peaks in classical Greek geometry was reached in
works by Archimedes — to be singled out is his determina-
tion of the area of the surface of a sphere — and the work
on conic sections by Apollonius from around 200 B.C.

Euclid’s Elements contain definitions, postulates and
theorems. The basic definitions are not particularly pre-
cise. For example a point is defined as an object without
parts, and a /ine as an object without width. A line corre-
sponds to what we nowadays call a segment of a curve. A
straight line is defined as a line which runs directly along
its points, and hence corresponds to what we nowadays
call a line segment. Since one cannot define a notion by
listing all the properties it does not possess, these defini-
tions leave much to be desired and should be taken as a
point of departure only. It was, however, also a position on
the existence of atoms, indivisible elements, in the discus-
sion among Greek philosophers about this notion; a point
in Euclid’s Elements is an atom.

In other definitions, Euclid defines notions such as angle
and parallelism and geometrical figures such as the circle
and the different types of triangles and quadrilaterals. Here
we shall only state Euclid’s definition of a right angle:
“When a straight line is erected on another line, so that
the angles next to each others have the same measures,
then any of the angles having the same measures is right;
and the erected line is said to be vertical to the other line.”

In a certain sense postulates and theorems have the same
status in Euclid, but with the difference that postulates
are facts directly accepted as true without proofs, whereas
theorems have to be proved by rational arguments from
definitions and postulates.

Constructions of geometrical figures play an important
role in Greek geometry, in providing the necessary proofs
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of existence. In particular, the constructions that can be
performed with ruler and compass were considered im-
portant. Which rules must be satisfied in this connection?
Which constructions are admissible? In the first three of
his postulates, Euclid therefore writes down some basic
admissible constructions with ruler and compass.

In the English translations of Euclid’s Elements, the pos-
tulates (for plane geometry) are formulated in the follow-
ing manner.

Let there be postulated:

1. That one can draw a straight line from any point to
any other point.

2. That one can extend a finite straight line continuously
in a straight line.

3. That one can construct a circle with any centre and
any radius.

4. That all right angles are equal to one another.

5. That, if a straight line intersects two straight lines and
make the interior angles on the same side less than two
right angles, then the two lines, if they are extended
indefinitely, meet on that side on which are the angles
less than two right angles.

Subtle difficulties are hidden behind the above system of
postulates, and the system is not sufficient to characterize
Euclidean geometry. Not until two thousand years after
Euclid did David Hilbert (1862—1943) succeed in formu-
lating a complete set of axioms for Euclidean geometry in
his book Grundlagen der Geometrie from 1899. Hilbert
divided his axioms into five classes dealing respectively
with incidence (about connections and intersections be-
tween points, lines and planes), ordering (about points
between others on line segments), congruence (about sim-
ilarity of line segments, angles and triangles), parallelity
and continuity (about density of points on lines).

The methods which were developed to handle geomet-
rical questions by Euclid, Apollonius and their many suc-
cessors based on purely geometrical notions is now known
under the name synthetic geometry.

A decisive new step in the history of geometry was taken
with the development of analytic geometry (coordinate
geometry) in the book La Géométrie by René Descartes
(1596-1650) in 1637. With the emphasis in coordinate
geometry on algebraic methods, the synthetic methods in
geometry for some centuries receded in the background.

In his work, Descartes criticized the line of approach to
geometry in Euclid’s Elements and in Apollonius’ work
on conic sections; on the one hand he considered this line
of approach to be too abstract and on the other hand as
too dependent on the consideration of concrete figures.
Independently of Descartes, also Pierre de Fermat (1601—
1665) developed a coordinate geometry first published in
1679, although the basic work had been done in 1629.
Fermat, in contrast to Descartes, felt in line with Greek
thinking and he viewed his work as merely another way
of formulating the work of Apollonios.

The appearance of differential and integral calculus by
the end of the seventeenth century had enormous influence
on the development of geometry, and a new branch of
geometry, differential geometry, was born.
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Fundamentally, however, the new developments in ge-
ometry mentioned above were still based on the Euclidean
notion of space.

2. The influence of artists on the geometrical notion of
space

From the dawn of mankind artists have contributed in a
very literal sense to shaping our notion of space. In the old-
est cultures, visual art not only factually but also visually
was plane, i.e., without depth. This is especially evident
in the Sumerian culture from around 3000 B.C., in an-
cient Egypt, and in the oldest Greek culture. On Greek
vase paintings from the later period there are often spatial
elements; for example in the well known motive “Ajax
and Achilleus at the board game” from around 530 B.C.
(see e.g. Sparkes 1996), in which a bilateral symmetry is
realized by a 180° rotation in space around an axis in the
motive. Examples of such realizations of a bilateral sym-
metry do, however, already exist in the Sumerian culture
(see e.g. Weyl 1952, p.9). In the making of sculptures,
artists of course always had to relate to physical space.

The spatial dimension in visual art, i.e., depth, was in-
troduced much later, in close connection with the devel-
opment of a theory of perspective. The laws of perspec-
tive were first formulated in the Renaissance by Alberti
in 1435 and further developed by Leonardo da Vinci and
Albrecht Diirer. From a mathematical point of view the
theory of perspective exploits the so-called central pro-
Jjection, in which one considers a fixed image plane in
space and a fixed point of sight outside the image plane.
Any given point in space different from the point of sight
is projected into the image plane by drawing the line from
the point of sight through the given point to intersection
with the image plane.

From a mathematical point of view the theory of per-
spective later was incorporated as one of the main meth-
ods in descriptive geometry, which is the theory of how a
spatial figure can be represented mathematically correctly
in a drawing plane by different projections, and how one
can construct and determine intersections of spatial fig-
ures from such plane projections. Descriptive geometry
was founded as a mathematical science by Gaspard Monge
(1746—-1818) in the work Géométrie descriptive published
after a series of lectures on the subject in 1795. The sub-
ject is a forerunner for projective geometry, having its
point of departure in a number of properties of geometri-
cal figures left unchanged by central projection discovered
in the seventeenth century by G. Desargues and B. Pascal
among others.

3. On the notion of space in mathematics and philos-
ophy

Geometry as pure mathematics, which encompasses a col-
lection of abstract statements about ideal figures, was, as
mentioned earlier, founded around 600 B.C. in the Greek
culture by Thales. The ideal geometrical figures will here
be referred to as geometrical forms. A figure, in other
words, is the concrete realization of an abstract form. In
a certain sense one can say that the artists in their works
realize the abstract forms in concrete figures; thereby the
artist gets into an intellectual relationship with the geome-
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ter, who looks for the abstract form behind the concrete
figure.

Plato (427-348 B.C.) supposed that such shapes had an
independent life in the world of ideas, which he assumed
to be real. Figures in the world of sensations are imper-
fect images of the ideas. Aristotle (384—322 B.C.), who
was the most important of Plato’s pupils and immediate
successors, did not accept the concept of a world of ideas.
Concrete figures according to Aristotle consist of form and
matter, and geometry has to do with the form of the fig-
ures. Thus mathematics has to do with the abstract aspects
of concrete objects. It is, among other things, due to this
discrimination between the concrete and the abstract that
mathematicians at all later times have felt in great debt to
the Greeks.

Many philosophers have taken a position on the notion
of space, and we cannot mention all points of view here.
Of particular importance for posterity has been Kant’s dis-
cussion of the notion of space.

Immanuel Kant (1724-1804) views space and time as a
priori given forms of appearance, since he considers space
and time as necessary conditions of perception, which in
itself cannot be perceived. In Kritik der reinen Vernunft in
1781, in the first section of Die transzendentale Asthetik,
Kant writes on space:

“Space is not an empirical concept which has been derived from
outer experiences. For in order that certain sensations be referred
to something outside me (that is, to something in another region
of space from that in which I find myself), and similarly in order
that I may be able to represent them as outside and alongside
one another, and accordingly as not only different but as in dif-
ferent places, the representation of space must be presupposed.
The representation of space cannot, therefore, be empirically ob-
tained from the relations of outer appearance. On the contrary,
this outer experience is itself possible at all only through that
representation.” (Kant 1781, p.38)

With his view on the notion of space, Kant excludes the
possibility of more than one such notion. And for Kant,
this a priori given notion of space is the one exhibited in
Euclid’s Elements.

Since space is a necessary condition for having sensa-
tions and since space is described in mathematical terms,
Kant comes close to saying that everything that can be
experienced through our senses can be described mathe-
matically. Thereby he is in line with the Greek philoso-
phers and with great physicists such as Galileo Galilei
(1564-1642) and Isaac Newton (1642—1727).

4. Dimension and the geometrical notion of space

As a mathematical notion, dimension is derived from the
properties related to length, area and volume. A geomet-
rical figure, with length only (as a curve), is said to have
dimension 1; if the figure can be ascribed an area (as a
surface) it has dimension 2; a body in space with a vol-
ume has dimension 3. In general, a geometrical figure is
said to have dimension 7 if the position of a point in the
figure on small pieces can be specified by n coordinates.
As an example, the position of a point on a curve can be
determined by the distance along the curve measured from
a fixed point on the curve. One can think of 4 dimensions
as 3 spatial parameters and | time parameter. Higher di-
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mensions can be imagined by adding further parameters,
e.g. temperature, pressure, etc.

A geometrical figure, where the position of a point in
the figure on small pieces can be described by n coordi-
nates, is called an n-dimensional manifold. In geometry
one studies the properties of manifolds and for a math-
ematician every manifold represents a space. The Dutch
mathematician Freudenthal has even defined geometry as
the branch of mathematics occupied with “grasping space”
(Freudenthal 1973). And in its widest sense, the mathemat-
ical notion of space is inseparately attached to the notion
of manifold here.

In addition to dimension also notions such as orienta-
tion, curvature and symmetry are fundamental notions in
the mathematical description of “space” (Hansen 1993a).
An orientation provides the object under consideration
with preferred directions and rotations. Curvature has a
direct relation to metric quantities such as length and vol-
ume. Symmetry measures the degree of homogeneity in
the object.

5. Non-Euclidean geometries

Right from the beginning, mathematicians have specu-
lated whether Euclid’s 5th postulate is really necessary, or
whether it is a consequence of the four other postulates.
Down through the centuries, vain attempts were made to
deduce Euclid’s 5th postulate from the other postulates.
During these efforts, many equivalent formulations of the
postulate were found. The most famous equivalent formu-
lation is due to Playfair 1795 and is known as Playfair’s
axiom, or

The parallel axiom: For any given line in the plane and
any given point outside the line, there passes exactly one
line through the given point that does not intersect the
given line.

As a consequence of his definitions, and the five pos-
tulates, Euclid shows in the Elements that the following
theorem holds.

The sum of the angles in a triangle: The sum of the angles
in a triangle is equal to the sum of two right angles (180°).

The most famous attack on the problems in connection
with Euclid’s 5th postulate is due to the Italian math-
ematician Girolamo Saccheri (1667-1733). In the book
Euclides ab omni naevo vindicatus (Euclid freed of any
spot) in 1733, Saccheri attempted to prove the theorem
about the sum of the angles in a triangle, making only use
of the first four of Euclid’s postulates. He tried to obtain
a contradiction by making assumptions corresponding to
the sum of the angles in a triangle being greater than, re-
spectively less than, the sum of two right angles. It can
be proved that the theorem about the sum of the angles in
a triangle is in fact equivalent to Euclid’s 5th postulate.
Saccheri did not succeed in giving a correct proof of the
theorem as desired.

Around 1830 came the breakthrough, when the Russian
mathematician Nicolai Ivanovich Lobachevsky (1793—
1856) in 1829 and the Hungarian mathematician Janos
Bolyai (1802—1860) in 1832 independently of each other
announced that they could construct geometries satisfying
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all the properties known from Euclidean geometry except
the parallel axiom. As it turned out, Euclid had made a
clever decision when he formulated the 5th postulate in the
description of his geometry. Karl Friedrich Gauss (1777—
1855) had in fact obtained similar results already back in
1816 but had kept his findings to himself since they devi-
ated so strongly from accepted philosophical thinking of
the time.

In a paper in 1887 Henri Poincaré (1854-1912) de-
scribed a particularly well known model of a non-
Euclidean geometry: the hyperbolic plane (see e.g. Hansen
1997). The points in Poincaré’s model of the hyperbolic
plane are the points within the boundary of a Euclidean
disc ®, and the hyperbolic lines are the Euclidean circular
arcs in @ that intersect the boundary circle of & at right
angles. As hyperbolic lines we also include all Euclidean
diametres in ®; one can think of these hyperbolic lines
as Euclidean circles with “infinitely large” radius. Angles
are measured as the corresponding Euclidean angles. The
sum of angles in a hyperbolic triangle is less than 180°.

In this century Poincaré’s model has been used by the
Dutch artist M. C. Escher in four circular woodcuts with
the common title: Circle limit (see e.g. Ernst 1976). In
Escher’s picture Circle limit III the fish swim along circu-
lar arcs similar to hyperbolic lines (see e. g. Coxeter 1996)
and it is easy to find examples of circular arcs breaking the
parallel postulate. In the picture Circle limit IV Escher
has constructed a fascinating mosaic of devils and angels.
All the line segments are strictly hyperbolic, and all devils
and all angels have the same non-Euclidean size. When
they appear to be of different sizes it is due to the fact that
the model distorts distances — in the same way as Green-
land in a standard atlas of the world appears larger than
Australia (which is not the case). There is infinitely far
out to the boundary of the disc measured by hyperbolic
length in Poincaré’s model.

Due to the fine agreement between theory and observa-
tions in nature people had in the course of centuries be-
come accustomed to thinking of Euclid’s postulates as self
evident truths. The construction of non-Euclidean geome-
tries raised the question which kind of geometry describes
the physical world in the best possible way.

6. The qualitative aspects of the notion of space

In a paper in 1679 Gottfried Wilhelm Leibniz (1646—1716)
suggested a new type of investigations of geometrical fig-
ures, which he called analysis situs, or geometria situs.
It remains obscure what he had in mind, but clearly he
was unsatisfied with coordinate geometry as a means to
handle geometrical figures. In a letter written in Catania
in 1836, Johann B. Listing, a student of Gauss, suggested
that the name analysis situs be substituted by topology,
the name used nowadays. The name topology is gener-
ally attached to the study of those qualitative properties
of geometrical figures that remain invariant by bending,
streching, contraction or any other continuous deformation
that does not create new points or let existing points melt
together. To geometry similarly one counts those quantita-
tive properties of geometrical figures that remain invariant
by transformations preserving lengths and angles. In the

98

ZDM 98/3

20th century, topology has grown into a very important
mathematical subject.

We shall discuss the topology of closed surfaces as an il-
lustration of many of the mathematical concepts and ideas
presented above.

Intuitively, a surface is a geometrical object, which looks
locally like the plane. In order to understand what this
means, one can think about an atlas of the globe of the
Earth. The plane charts in the atlas each provides the local
information about a small part of the globe of the Earth,
while the complete atlas of charts provides the global in-
formation about the globe of the Earth. In topology one
transfers this picture and the terminology directly and say
that a geometrical object locally looks like the plane if
it can be described by an atlas of plane charts such that
the local information in overlapping charts is compati-
ble. Such objects are also called 2-dimensional manifolds
since as earlier mentioned there are natural generalizations
to higher dimensions.

It is always possible to choose a sense of direction
around any point in a surface. If these senses of directions
can be chosen consistently along the surface it is said to be
an orientable surface; in the opposite case it is said to be
a non-orientable surface. A model for all non-orientable
surfaces was discovered by A.F. Mobius (1790-1868). A
so-called Mobius band is obtained by taking a rectangular
strip and gluing a pair of opposite ends, after first giving
the strip a half twist. In general, a surface is non-orientable
if it contains a closed strip equivalent to a Mdbius band.

A surface, which consists of a single piece (it is con-
nected), has bounded extension and no edges (it is without
boundary), is called a closed surface. Every orientable,
closed surface is topologically equivalent to a sphere or to
the surface of a ball with handles. The number of handles
on the ball is called the genus of the surface. Correspond-
ingly, every non-orientable, closed surface is topologically
equivalent to a sphere from which a number (the genus
of the surface) of “curved” circular discs have been re-
moved and substituted by Mobius bands sewed onto the
surface along the boundaries of the circular holes. A par-
ticularly well-known non-orientable, closed surface was
discovered by Felix Klein (1849-1925) and is now known
as the Klein bottle. It has genus 2, since it can be split into
two Mobius bands. Any model of a non-orientable, closed
surface realized in 3-dimensional space must by necessity
exhibit self-intersections.

The first complete exposition of the topological classifi-
cation of the closed surfaces was given in a survey paper
on topology in 1908 by the German mathematician Max
Dehn (1878-1952) and the Danish mathematician Poul
Heegaard (1871-1948).

The main idea in the proof of the classification theorem
goes back to Bernhard Riemann (1826-1866) and pro-
ceeds by a process which modern topology has dubbed
surgery (see e.g. Hansen 1993a, Chapter 2).

It turns out that an orientable closed surface of genus
at least 2 can be smoothly “wrapped up” in the hyper-
bolic plane (see e.g. Hansen 1993b), whereby it can be
given constant negative curvature. The curves of (locally)
shortest length, the geodesics, in the resulting geometry



ZDM 98/3

are the images of the hyperbolic lines in the hyperbolic
plane. A closed surface of genus at least 2 thereby gets
the structure of a so-called hyperbolic space form. Cor-
respondingly, an orientable closed surface of genus 1 — a
torus — can be smoothly “wrapped up” in the Euclidean
plane whereby it can be given constant curvature zero; a
so-called parabolic space form. In the resulting geometry,
the geodesics are the images of the straight lines in the
Euclidean plane. A closed surface of genus 0 is topolog-
ically equivalent to a sphere and can be given constant
positive curvature; a so-called elliptic space form. In this
case, the geodesics are the great circles on the sphere.

The above 2-dimensional space forms have natural
higher dimensional analogues which play a significant role
in the study of the geometry of manifolds in higher dimen-
sions.

Manifolds occur naturally in mathematical models in
e.g. physics, chemistry, biology and mathematical econ-
omy. In the applications, the geodesics in geometrical
structures on the manifolds often represent important phe-
nomena.

7. Geometry of manifolds in modern physics

With the discovery of non-Euclidean geometries began one
of the golden periods in the interaction between mathemat-
ics and physics, which in the beginning of this century led
Albert Einstein (1879-1955) to develop his theory of rel-
ativity (see e.g. Hansen 1993a, Chapter 5).

The concept of an event is fundamental in relativity. It
is an idealized occurrence in the physical world without
extension in neither space nor time. The collection of all
possible events in the universe, those that have occurred in
the past, those occurring now as well as those to occur in
the future, together form a basic set M called a space-time
in which particles move along so-called world lines. The
general idea is then to equip the space-time M with as
adequate a mathematical structure as possible to describe
physical phenomena.

Hermann Minkowski (1864—1909) suggested a space-
time M with a linear structure of dimension 4 which was
used by Einstein in his special theory of relativity in 1905.
In the Minkowski space-time, the 3 spatial axes have no
coupling to the time axis. In order to incorporate grav-
itation, Einstein had, however, in his general theory of
relativity in 1915, to substitute the Minkowski space-time
with a curved space-time manifold M, which locally looks
like the Minkowski space-time but in which the 3 spatial
axes cannot globally be separated from the time axis. From
a philosophical point of view it is noteworthy that this is
the first time in history that the geometry of space-time is
proposed as the cause of physical phenomena.

There are four known fundamental forces in nature,
namely gravity, electromagnetism and the weak and the
strong interactions of elementary particles. In order to
make a theory that unifies these four forces in nature,
physicists have to couple internal symmetries in elemen-
tary particles, like spin, with external symmetries of the
particles in the space-time manifold. This coupling takes
place in a so-called fibre bundle E over the space-time
manifold M. The bundle space E is foliated in fibres F/,
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one copy F, of F' for each point = in M, such that the
possible internal symmetries for a particle at « is described
by the elements in F}. The resulting theories are known
as gauge theories.

There are difficulties in combining gravity with the three
other forces in a unified theory. Therefore physicists have
developed an extension of gauge theories in which parti-
cles are represented by open or closed strings in the space-
time manifold. There is some hope that out of these so-
called string theories will emerge the Grand Unified The-
ory (GUT) which is the ultimate goal. In order to avoid
certain undesirable features from a physical point of view
in the mathematical models occurring in string theories,
mathematics dictates the space-time manifold to be of di-
mension 26.

With gauge theories, and more generally, string theories,
we have reached the frontiers of research in mathematical
physics and a natural end of this essay. The question about
the nature of “space” will certainly occupy philosophers
also in the future, for the question is perhaps even deeper
than the question about the “origin of life”. And mathe-
maticians most certainly will invent new spaces and new
structures which might have an impact on the so-called
real world, whatever that is.
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