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Can Mathematics Educate for Peace?

Anna Rosa Scarafiotti, Annarosa Giannetti, Torino

Abstract: In this paper we simulate a discussion with our stu-
dents, in which we alternate specific mathematical issues (as the
PERT (Program Evaluation and Review Technique) in 1.2, a dis-
crete dynamical system in 2.1 and fractals in 2.2) that can be
applied in situations such as the evolution of populations (2.1) or
other well-known contexts such as the economic equilibrium the-
ory or the ecological systems. The students are given occasions
to deepen both the meaning and use of the studied model.

We emphasize those cases where the model leads to analyses
of behaviour depending on parameters whose values highlight
stable states of dynamic systems (regions of peace) and regions
where control over the system evolution is lost, and where the
system passes from bifurcations to chaos (regions of war).

Kurzreferat: Kann Mathematik zum Frieden erziehen? In
diesem Beitrag simulieren wir eine Reflexion mit unseren Stu-
denten, in der wir spezielle mathematische Themen (wie PERT
(Program Evaluation and Review Technique) in 1.2, ein diskretes
dynamisches System in 2.1 sowie Fraktale in 2.2) ansprechen,
die in der Populationsdynamik (2.1) oder anderen bekannten
Zusammenhéngen wie dkonomische Gleichgewichtstheorie oder
Okosysteme angewandt werden konnen. Dabei wird den Studen-
ten Gelegenheit gegeben, iiber Bedeutung und Anwendung der
untersuchten Modelle zu reflektieren.

Insbesondere werden solche Fille betrachtet, bei denen das
Modellverhalten in Abhdngigkeit bestimmter Parameter zu
analysieren ist. Die Werte dieser Parameter bestimmen stabile
Zustinde dynamischer Systeme (Friedensregionen) und Regio-
nen, in denen die Kontrolle iiber die Evolution des Systems
verloren geht und wo das System von Bifurkationen ins Chaos
iibergeht (Kriegsregionen).

ZDM-Classification: A40, 190, M40

1. Reflecting with our students

Our contribution is actually a consideration we would like
to convey to our students, both the ones we had, and those
who will listen to us. Open letter or hypothetical seminar,
the youth are the ideal addressees of our ideas and hopes
(Giannetti/Scarafiotti, 1995).

We can look at the history of mathematics both from
an internal and an external point of view. We will thus
become aware of the internal dialectic of a self-generated
development, a history of ideas implying that “even in
times of great political and social perturbations, it is the
spiritual things — in the French meaning of the expres-
sion — that count the most ...” (Boyer, 1968). But, at the
same time, we will also become aware of an unceasing di-
alectical relationship between science and society, where
the connection between scientific theory and practical ap-
plications, economic production and ideology, philosophy
and social arrangement shows itself to be complex and
articulate. We wish to dwell, together with our students,
on some of the knots in this plot: they are highlighted by
the occasions in which the history of mathematics linked
to mankind’s history, alternating between war actions and
peace situations. Robert Oppenheimer, in a conference in
1953, said that every great discovery partakes in the world
of beauty, and we trust knowledge to be good in itself. But
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it is also an instrument, an instrument for those who will
come later ...; it’s an instrument for technology, for prac-
tical activities, and for mankind’s fate. So it is for us as
scientists, so it is for us as men.

1.1 A glance at the history of mathematics

From Archimedes’ lever to Heron’s simple machines the-
ory, such practical need, put forward by the society, is
already present in ancient mathematics, though it is much
less felt than in later times, when natural science becomes
a main developing factor for technique. Winch, screw,
siphon, and other instruments constructed starting from
these ones, were known and used, but both Archimedes
and Heron, as well as other ancient mathematicians, un-
derestimated these “useful” realizations, according nobil-
ity and beauty only to the “artes liberales” (Holton, 1978).

Ever since then, there has been a single field in which
the available technology was applied, i.e. warfare. Pow-
erful ballistic machines were conceived for siege and de-
fence strategy, though peaceful applications never seem to
have had any advantage from them.

The fifteenth and sixteenth centuries saw the training,
in various subjects, of a class of technicians, who did
not always devote themselves personally to specifically
scientifical issues, but who induced other people to do
so. These were the great Renaissance artists — architects,
sculptors and painters. Canals, dams and earthworks were
built together with imposing cathedrals and palaces: all
this required new instruments and devices. Mathemat-
ics was inevitably recognized as indispensible, thanks not
only to mechanics, but also to civil and military architec-
ture, based on rigorous techniques (Dijksterhuis, 1961).

The French Revolution marks the beginning of a differ-
ent presence of mathematicians in society, and a momen-
tous change in the social role of mathematics.

Mathematicians took an active part in revolutionary
events, by offering their skills to the political power. Their
knowledge was resorted to in times of danger for the new
institution, to build defense works and study new war in-
struments. The greatest French mathematicians of the time
were appointed to teach in the most important, newly es-
tablished military academies, and some of them even took
active part in the revolutionary, and then in the “restored”,
government (Bottazzini, 1980).

Our century witnesses a great number of mathematical
applications to peaceful purposes, as well as warlike ones
— unfortunately, as we all know.

Before going into a more detailed analysis of some ex-
amples, it is worth giving a short account of two of the
most important knots in the above mentioned plot of ideas.

The strategy game theory is the basis for modern math-
ematical economy, and it has also influenced decision the-
ory, though to a limited extent.

All this research took place in the United States during
the World War 11, clearly pursuing warlike aims; but, as
Conolly said “if one substitutes for the word ‘submarines’
in the phrase ‘search for submarines’ alternativo words
such as ‘minerals’, ‘lost aircraft’, ‘new markets for an
industrial product’, ‘victims of kidnapping’, or ‘a lost key’,
it is easy to perceive that the scope of the theory is not
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confined to a purely military context”.

Number theory, in all appearances completely useless,
has become, on the contrary, the basis for modern secu-
rity systems. It certainly provides the instruments which
are used to control the hundreds of nuclear missiles which
have proliferated in this second afterwar. But it is not only
the military who require their communications to be made
secure by encryption techniques. There are also commer-
cial and political reasons for ensuring that information is
secret and secure. In short, the realization of a cipher sys-
tem (Devlin, 1988) is based on the “near-impossibility”
of factoring into its primes a very large number (say of
the order of 100 digits). In fact, message encryption cor-
responds to multiplication of two large primes, decryption
to the opposite process of factoring. As there is no quick
method of factoring large numbers, it is practically “im-
possible” to recover the deciphering key.

1.2 Operations research (O.R.) — the PERT

Studies in O.R. began with World War II. The British mil-
itary command, followed by the American one, summoned
in a great number of scientists to work out a proper method
to deal with strategy and tactics approaches. Researches
on “military operations” were carried out, whose positive
outcome should be arrived at with a minimum amount of
expenses for equipment and “men”.

These were the first researchers in O.R., who con-
tributed to advise the U.S. Navy on the conduct of an-
tisubmarine patrols.

After the success in the military field, O.R. became of
interest for “peaceful” industrial applications. A specific
example is the PERT (Program Evaluation and Review
Technique).

It was developed (1958-59) in order to measure and
check the progress stages of the project for the realiza-
tion of the Polaris rocket. The application of the PERT
technique allowed an effective coordination for thousands
of contractors and industries partaking in the Polaris pro-
gramme, bringing the conclusion of the project two years
forward, compared with times scheduled at its start.

Private American industry, and world industry soon af-
terwards, has then introduced the PERT as a guide in
projects developing thanks to an optimal coordination of
various activities. Examples are: building programmes,
computer routines, complex devices maintenance plan-
ning.

One of the first purposes of PERT is to determine the
probability of realizing a project in a given time; the
PERT allows the identification of those activities on which
the “greatest effort” must be made, in order to keep the
progress within the scheduled times, on pain of compro-
mising the whole project.

But what is PERT? It is a net-like technique: the issue
is shown on a directed network, drawing up the analysis
of the project devoloping times.

Let us see a simple example: suppose we have to carry
out a job consisting of three elementary operations a, b, c;
we know that operation b must follow a, while operation
c is independent of the other two. We know the realization
times for each activity: a, t = 5 (weeks); b, t = 6 (weeks);
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¢, t = 10 (weeks). What is at issue is the “least” possible
duration of the whole job.

A PERT network is realized: the nodes are the events,
the branches are the activities linking an event to another
one, following in time; event (1) is the work start, event (3)
its conclusion; the network takes into account the priority
among the activities, and every branch is labeled with a
number showing its duration (see Fig. 1).
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Therefore (5+6) weeks are necessary for the whole work;
if useful, operation ¢ can be delayed one week, without
prolonging the total realization time. Vice versa, the activ-
ities a and b are called “critical”, because a delay in them
prolongs the project realization time.

In fact, one of the points at issue in a PERT network
is the identification of those critical activities requiring
particular resources, not to miss the “appointments” of
the project conclusion.

This is, in our opinion, a cue toward the realization of
projects involving “high diplomacy for peace”, in search
of the optimum for men, within technically controlled de-
veloping times. We have a good example of this at “Po-
litecnico di Torino”: the ISF (ingegneri senza frontiere —
engineers without frontiers) association.

2. Can mathematics educate for peace?

To answer this question we have to recall different defi-
nitions of peace, leading also to different ways to face the
peace education problem in school.

For example, Johan Galtung, one of the most important
exponents of the so-called Peace Research, thinks that the
crux of the matter is the distinction between “negative
peace” and “positive peace”. The first one means simply
the lack of war or personal violence. On the contrary,
positive peace concerns the lack of structural violence that
is expressed in social injustice, exploitation and denial of
rights.

This way, peace means “full realization of any human
right”. Now we can easily relate the “positive” definition
of peace with the mathematical concept of balance.

If peace is balance and stability in the countries of the
world, if war stems from upsetting unsettled balances, then
we can identify and examine with our students situations
to be interpreted as models for the stability or instability
of the system “universe”. In the examples we are going to
give, what must be “read” is the researching care on the
breaking points, since the purpose is that of finding the
parameters governing the state of the system, the determi-
nation of their values, up to the recognition of the critical
cases.

In other words, the teaching context implies the follow-
ing procedure: a modeled situation is interpreted as a real
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phenomenon and then the students are stimulated to con-
struct examples for peace situations and war situations.

2.1 Study of a discrete dynamical system on a range
interval I

Given I, closed interval of R, let f be an iterative appli-
cation from [ into I, so that f([) is strictly included in I;
the pair {I, f} is termed a dynamical system on I. Given
o € I, the set

{‘T07 f(x0)7 fz(x0)7 fn(xo)}

is called the orbit of z( relative to f. Studying a dynami-
cal system, consists, above all, in dealing with two main
questions:

— defining the minimal invariant sets;

— studying their attractivity and stability.

If we analyze a dynamical system depending on a con-
trol parameter r, we can learn to discuss the above men-
tioned problems with reference to r. If we consider the
dynamical system on I = [0,1] defined by f.(z) =
r X (1 — ), we find that the acceptable parameters for
the dynamic system fall within the range [0,4], as the
maximum of f,.(z) is P(1/2,7/4).

Still, upon studying this system, the existence of a crit-
ical value of , r = 1 + /6, is discovered, for which the
path branches off; then, with r» = 3.57, further branching
takes place, until, with r > 3.8284, the “chaotic” region
is reached, owing its name to the swift diversification of
the orbit, in connection with zy showing just a small dif-
ference between each other.

Through a strong simplification, we can conclude that
the given example highlights how the basic notion — pa-
rameter r falling within a well-defined range — is insuffi-
cient to assure a stable state for the phenomenon.

The function f,.(z) is known as “logistic iterator” in
mathematical models for the increase of rate  in a popula-
tion. More properly, the mathematical model for a logistic
iterator is

gr(x) =7 x (1 —z/k)

where k is the carrying capacity parameter. (See also,
Stein, Logistic growth as a problematic example of math-
ematical model building, in ZDM Vol. 27(Feb. 1995), p.
1-5). Moreover, by studying f,.(z) it is possible to dis-
cover that there is a well-defined path which leads from
one state into the other state with parameter » > 3. The bi-
furcation phenomena can have very important implications
for management of the natural population, be it pasture,
fish, whales, insect pests, or human parasitic disease. We
take this mathematical model as a metaphor: it is only a
question of considering the peaceful living together of na-
tions as a system whose balance depends on a large num-
ber of factors, and whose “controllability” we can think to
study. On this subject G. Coyle’s (1981) essay “A model
of the dynamics of the third world war” is very curious:
it presents “hypothetical land conflict in Europe, analysed
with mathematical methods”. The purpose is incorporating
the factor of control in the scenario of war, and then the
author examines the prospects for the transfer of system
dynamics “technology” to defense analysis.
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2.2 Fractals
Mandelbrot (quoted in Devlin, 1988) studied the dynami-
cal system

xg € C Tpg1 =Tn +c with ceC

in the set of complex numbers; already in the case ¢ =0
it is found that zy “controls the system”, meaning that
if |zg| < 1 then zero is attractor for the paths, while if
|zo| > 1 then zero is attractor to infinity; lastly, if |zo| = 1
then the path belongs to the unit circle centered at zero.

The dynamical systems in the scope of complex num-
bers, as well as the dynamical systems on real ranges, are
studied with reference to the value of the involved pa-
rameters. For example, for 2,41 = 2,2+ ¢, c € C, if
¢ = 0.31 + 0.04¢ (i.e. it is “just beyond” the real axis
by 4.1072) (Devlin, 1988), the boundary separating the
region governed by the attractor and the one governed by
infinity is fractally deformed.

The fractal deformation of the boundary gives rise to
difficult identifications of the features of the set whose
boundary we consider.

The French mathematician Gaston Julia developed
much of the theory of the so called Julia sets — as the
boundary of a set of points in C whose orbits do not con-
verge to infinity — in 1915, while he was an in-patient
in an army hospital, recovering from the wounds he had
received in war. It was not until more than 60 years later
that Adrien Douady and John H. Hubbard developed new
methods to deepen the implications of Julia sets, using
an analogy from electrostatics. The beauty of Douady and
Hubbard’s work lies in the fact that the potential of any
connected set, like the unit circle centered at zero, can be
interpreted as a particular polar coordinate system for the
escape set, i.e. the set of points for which the iteration
escapes (Peitgen et alii, 1992).

In these models, the boundary can be interpreted as the
borderline between two conditions. In order to get over
“conflictual” situations, a map of the situations is required,
which main elements are their boundaries, the word hav-
ing, clearly, not only a geographical meaning!

On this subject it’s interesting to note that the title of a
book dedicated to computer modeling of chaos fractals is
just “Exploring the Geometry of Nature” (Rietman, 1989).

It would be interesting for the students to consider the
various meanings of the word “boundary” (Benveniste,
1969). Among these, a boundary is a place of meeting,
crossing and exchanging, the borderline between different
areas of influence. It can be defined as differentiation,
bringing order in a situation where a lack of differentiation
amounts to chaos. But it is also a form of relation; as such,
it allows to face and discover each other, to cooperate or
be opposed, in a never-closing interface.

A very nice little example can be drawn from the last
short story in the “Cosmicomiche” by Italo Calvino: “The
Count of Montecristo”. An invisible line binds and divides
Dantés and the Abbot Faria, who share a wish to escape.
But they are moved by opposite purposes that involve them
in a perpetual closing up and moving away from each other
and towards the way of escape, being separated from the
external world by a barrier that seems to “grow around
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them, and the longer they stay enclosed, the farther they
move apart”.

Such an example might show the students the need for
a punctilious attention to maintain a balance situation, as
well as a careful analysis and the constant check of the
parameters keeping a system in a condition of “peace”.

3. Conclusions

Let us go back to the starting question: can mathematics
educate for peace? It is not easy to give an answer, the
possible replies being so many. The question appears to
be even more acute in our days, in consideration of the
ethical problems raised by scientific progress, the social
responsibility of men of learning, the need to cut out the
distance between scientists and citizens, the necessity to
make the communication among the various social sub-
jects more transparent. G. H. Hardy, in his famous “A
Mathematician’s Apology” (1940) tries to solve the prob-
lem by “splitting” mathematics into real mathematics, the
one studied by real mathematicians, and the mathematics
that he calls superficial. This latter is useful and beneficial,
while the former is beautiful but useless, unharmful and
innocent; but, above all, he claims, the real mathematics
has no effects on war, whereas the superficial mathematics
can be widely employed in war, it can even foster it, by
making the war modern, scientific, total. Hardy also adds
that, when the world goes mad, a mathematician can find
in mathematics a matchless narcotic.

We have no certain answers, but it is possible to think
of peace as a balance between economic systems, culture
development, integration between ethnic groups, and this
requires man’s faith in its existence.

Mathematics can produce a culture of peace, opening
before us scenarios of controlled, or at least controllable,
casuality, and mathematics teaching, though unable to give
us the certainty of peace, can however concede us the hope
of being peace operators, as well as the ability to work for
its protection. Once again, it is the mathematician who
takes the floor; he, like everyone else, according to what
Jonas (1979) tells us, has the duty toward the future: the
responsibility in defending what has “ever and forever”
been irreplaceable in the history of mankind and in sug-
gesting a hope for human beings.
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