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Recognising Mathematical Creativity
in Schoolchildren

Derek Haylock, Norwich (England)

Abstract: Examples of tasks designed to recognise creative
thinking within mathematics, used with 11-12-year-old pupils,
are described. The first construct employed in the design of
these tasks is the ability to overcome fixation. Sometimes pupils
demonstrate content-universe fixation, by restricting their think-
ing about a problem to an insufficient or inappropriate range of
elements. Other times they show algorithmic fixation by con-
tinuing to adhere to a routine procedure or stereotype response
even when this becomes inefficient or inappropriate. The second
construct employed is that of divergent production, indicated by
flexibility and originality in mathematical tasks to which a large
number of appropriate responses are possible. Examples of three
categories of such tasks are described: (1) problem-solving, (2)
problem-posing, and (3) redefinition. Examples of pupils’ re-
sponses to various tasks are used to argue that they do indeed
reveal thinking that can justifiably be described as creative. The
relationship to conventional mathematics attainment is discussed
— mathematics attainment is seen to limit but not to determine
mathematical creativity.

Kurzreferat: Mathematische Kreativitit bei Schulkindern er-
kennen. Es werden Beispielaufgaben beschrieben, die dem
Erkennen kreativen Denkens in Mathematik bei 11-12 jdhrigen
Schiilern dienen sollen. Die erste Aufgabengruppe dient der
Fahigkeit, Fixierungen zu {iberwinden. Manche Schiiler zeigen
eine Fixierung in der Gesamtheit eines Inhaltsbereichs, die dazu
fiihrt, daf sie ihr Problemdenken auf einen unzureichenden oder
ungeeigneten Teilbereich von Moglichkeiten beschrinken. An-
dere Schiiler wiederum zeigen eine algorithmische Fixierung,
indem sie Routinemethoden oder stereotype Antworten auch
dann noch verwenden, wenn sich diese als uneffizient oder
ungeeignet herausstellen. Die zweite Aufgabengruppe soll di-
vergentes Denken fordern; sie ist gekennzeichnet durch Flex-
ibilitdt und Originalitdt der mathematischen Aufgaben, zu de-
nen es eine Vielzahl moéglicher Ergebnisse gibt. Drei Kategorien
solcher Aufgaben werden beispielhaft beschrieben: (1) Prob-
lemldsen, (2) Problemstellen und (3) Neudefinition. Beispiel-
hafte Schiilerantworten zu verschiedenen Aufgaben werden be-
nutzt, um zu zeigen, da} sie tatséchlich ein Denken enthiillen,
das kreativ genannt werden kann. Die Beziehung zu konven-
tionellen mathematischen Leistungen wird diskutiert — diese
scheinen mathematische Kreativitit eher zu hemmen.

ZDM-Classification: C40

1. Introduction

In this paper consideration is given to identifying the kinds
of responses in school mathematics that might justifiably
be identified as “creative”. The author has developed a
battery of tasks for use with pupils around the age of 11-12
years, based on a number of key constructs for recognising
mathematical creativity. The original collection of tasks
(Haylock, 1987a) has been developed and supplemented
by further tasks based on the same constructs. Examples
of responses to these tasks by 11-12-year-old pupils in
Britain are used to illustrate the constructs proposed and to
argue that they do indeed identify aspects of mathematical
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ability that are significant in terms of pupils’ responses to
mathematical problems. The approach used is to start with
ideas associated with creativity in general and to identify
those aspects of creative thinking that would seem to be
of most relevance to pupils doing mathematics in school.

1.1 What is creativity?

There is no single definition of creativity that is generally
accepted or used in research. Creativity in general is a no-
tion that embraces a wide range of cognitive styles, cate-
gories of performance, and kinds of outcomes. As Cropley
(1992) points out, there is considerable confusion about
the nature of creativity and there are at least two major
ways in which the term is used. On the one hand, it refers
to a special kind of thinking or mental functioning, often
called divergent thinking. On the other hand, creativity is
used to refer to the generation of products that are per-
ceived to be creative, such as works of arts, architecture
or music. In terms of teaching children in schools, Cropley
leans towards the first of these and adopts the stance that
creativity is “the capacity to get ideas, especially original,
inventive and novel ideas.”

1.2 What is creativity in school mathematics?

Given the lack of an agreed definition for creativity in gen-
eral, it is not surprising that there is not a single, clear def-
inition of mathematical creativity. However the approach
to creativity suggested by Cropley (quoted above) is most
prevalent in discussions about creativity in school mathe-
matics. The focus is on identifying the kinds of thinking in
mathematical tasks that qualify for the description “cre-
ative”. Krutetskii (1976) seems to equate mathematical
creativity in schoolchildren with mathematical giftedness,
using the two terms synonymously. He argues that mere
mastery of mathematical material needs to be extended
to an “independent creative mastery of mathematics un-
der the conditions of school instruction.” He then asserts
that mathematical creativity will be recognised in “the
independent formulation of uncomplicated mathematical
problems, finding ways and means of solving these prob-
lems, the invention of proofs and theorems, the indepen-
dent deduction of formulas, and finding original methods
of solving nonstandard problems.” Krutetskii’s conception
of mathematical creativity is clearly set within a problem-
solving framework for mathematical ability and suggests
that creativity in problem-solving in mathematics will be
characterised by such features as problem-formulation, in-
vention, independence and originality. Ideas such as these
— along with others such as flexibility, fluency, forming
new associations, and divergent production — that are as-
sociated with discussion and research about creativity in
general, have been seen by many mathematics educators
to have relevance to children doing mathematics in school
(see, for example: Aiken, 1973; Barbeau, 1985; Ediger,
1992; Haylock, 1987a; Singh, 1990; Tammadge, 1979;
Tuli, 1985; Whitcombe, 1988).

Two main approaches to the recognition of creative
thinking can be identified. The first is to consider the
responses of subjects to problem-solving tasks where a
particular cognitive process that is understood to be char-
acteristic of creative thinking might be required for suc-
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cess. This consideration leads to the recognition that one
of the key cognitive processes in creative problem-solving
in mathematics is the overcoming of fixation, the breaking
of a mental set. The second approach is to determine the
criteria for a product to be indicative of creative thinking
having taken place. Various kinds of divergent produc-
tion tasks can be devised in mathematics that generate
responses that can be judged by such criteria as flexibil-
ity, originality and appropriateness. These two approaches
provide the basis for the framework that has been adopted
by the author for the recognition of creativity within school
mathematics (Haylock, 1987b).

2. Overcoming fixation

Creative thinking is almost always seen as involving flex-
ibility. Helson & Crutchfield (1970), for example, found
that those research mathematicians who had been rated
as more creative by other professional mathematicians
scored significantly higher for flexibility than their peers.
The opposite of flexibility is rigidity of thinking. One as-
pect of creativity that has clear relevance to mathematical
problem-solving, therefore, might be the ability to over-
come fixations or rigidity in thinking, to break from mental
sets. Balka (1974) includes in a list of criteria for creative
ability in mathematics “the ability to break from estab-
lished mind sets to obtain solutions in a mathematical sit-
uation.” A basic issue in mathematical problem-solving is
why a person who knows all the mathematics they need
in order to solve a particular problem still fails to solve
it. Sometimes, a possible explanation is that their mind
is set in an inappropriate direction, that they are adhering
rigidly to an approach that does not lead to the solution.
The classic accounts of mathematical invention and cre-
ation in mathematics by Poincaré (1952) and Hadamard
(1954) discuss creative problem-solving in terms of the
four stages of preparation (becoming familiar with the
problem), incubation (allowing the mind to work on the
problem), illumination (when the insight that leads to a
solution is obtained) and verification (confirming that the
insight is correct). In these accounts, the key to the tran-
sition from the incubation stage to illumination appears
often to be an unexpected or novel way of considering the
problem. When this does not occur it is often because the
problem-solver’s thinking is fixated along inappropriate
lines.

Mathematics teachers will recognise fixation as a char-
acteristic behaviour of many students. For example, when
required to calculate 20 x 10, some students will resort to
the long multiplication algorithm, even though they know
the answer to be 200. In this case it is likely that the stu-
dent is bringing to the problem an expectation that an al-
gorithmic approach will be required. Cunningham (1966)
calls this a subjective set: a set of attitudes, intentions or
presuppositions that the subject brings to the situation. He
distinguishes this from an objective set, where the mental
set is established by the materials or sequencing of events
within the situation. This is an interesting distinction, but
one that is difficult to maintain in terms of pupils doing
mathematics in a school context. It seems likely that be-
haviour suggesting fixation in problem-solving will be a
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combination of both pre-determined attitudes and the con-
tent or presentation of the problem-solving situation.

However, a useful distinction between two kinds of fix-
ation in mathematics can be made. Krutetskii (1976) iden-
tified “flexibility of mental processes” as a key component
of creative mathematical ability in school-children. He il-
lustrated this with problems involving “self-restriction”
and examples of pupils “leaving the patterned stereotyped
means of solving a problem and finding different ways...”
This suggests, therefore, that there are at least these two
kinds of fixation that are especially significant in mathe-
matical problem-solving: self-restriction and adherence to
stereotype approaches. These are referred to in this paper
as content-universe fixation and algorithmic fixation.

2.1 Content-universe fixation

This construct is derived from Krutetskii’s notion of self-
restriction, where the pupil’s thinking about a mathemat-
ical problem is restricted unnecessarily to an insufficient
range of elements that may be used or related to the prob-
lem. Two examples of tasks — one numerical and one
geometric — that have been used with 11-12-year-olds,
are described below. These tasks target very specifically
the pupil’s ability to overcome fixations. The argument
is that the ability to overcome these kinds of fixation —
to allow the mind to range over a wider set of possibil-
ities than might at first come into the conscious aware-
ness of the problem-solver — is a significant aspect of
problem-solving in mathematics and warrants the descrip-
tion “creative thinking”. Readers must judge for them-
selves whether it is justified to assert that the minority of
pupils who show the ability to overcome such fixations
stand out as being more creative in their mathematical
thinking than their peers.

2.1.1 Sum and difference

Pupils are given a series of questions in which they are
asked to find two numbers that have a given sum and a
given difference. The early examples reinforce the pupils’
tendency to restrict their thinking to a content-universe of
positive integers. For example, they might find two num-
bers with sum 10 and difference 4. Later in the sequence
they are asked to find, for example, two numbers with sum
10 and difference 10. A surprising number of pupils fail
on this because they appear to exclude the possibility that
one of the numbers might be zero. Then, when asked for
two numbers with sum 9 and difference 2, the vast ma-
jority of pupils assert that this cannot be done. By trying
all combinations of pairs of positive integers summing to
9 they believe they have exhausted all the possibilities. To
obtain the solution (3.5 and 5.5) it is necessary to over-
come this self-restriction and to adopt an interpretation of
“number” that includes other than whole numbers.

2.1.2 Isosceles triangles

This is a geometric task requiring the pupil to overcome
the tendency to restrict their thinking to an inappropriate
content-universe. In Fig. 1 pupils are asked to draw and
shade isosceles triangles inside the given shapes with the
following constraints: (1) they must use XY as one of
the sides of the triangle; (2) they must make the area of
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the triangle as large as possible. They may use a ruler.
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Fig. 1: Diagrams for “Isosceles triangles™ task

The first two examples in each line confirm the ten-
dency to conceive of isosceles triangles always with
the “base” horizontal. The correct solution for the third
one in each line requires the pupil to break from this
fixation and to use an isosceles triangle in a differ-
ent orientation. However, nearly all the pupils who
have sufficient geometric skills and knowledge to tackle
this task come up with the incorrect responses for
these that are shown in Fig.2. Again the argument
here is that the pupil who overcomes the tendency
to conceive of isosceles triangles in other than the
stereotype orientation is showing more-creative thinking.

AA A

=

Fig. 2: Typical responses to “Isosceles triangles™ task

2.2 Algorithmic fixation

The second kind of fixation that would seem to be signif-
icant in mathematics is derived from the notion of Ein-
stellung, as used, for example, in the classic studies in
psychology by Duncker (1945) and Luchins (1942, 1951).
This kind of fixation is shown where a pupil shows con-
tinued adherence to an initially successful algorithm, even
when this becomes inappropriate or less than optimal. This
might be an algorithm learnt beforehand, such as those
used for various calculations — or it might be one that is
developed through the sequence of questions in the task
itself. Even in the latter case it seems likely that pupils
will have been conditioned by their previous experience
of what leads to success in school mathematics to look
for an algorithm or some such process that can be applied
repeatedly to a sequence of similar-looking questions. The
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argument here is that it is justified to describe as more cre-
ative the thinking of the pupil, who, having established a
routine procedure that works for a sequence of problems,
is nevertheless able to hold in their mind the possibil-
ity that there might be a more elegant or more efficient
alternative to the stereotype. Much mathematics learning
necessarily contributes to the formation of standard pro-
cedures, algorithms and stereotype methods — but creative
problem-solving sometimes requires the student to break
away from the stereotypes in order to achieve an insight.
The following are examples of one numerical and one geo-
metric task that — following Luchins — have been designed
specifically to encourage pupils to establish an algorith-
mic procedure and to continue to apply it unnecessarily or
when it is no longer the optimal or most elegant solution.

2.2.1 Weights

In this task pupils are required to determine how to mea-
sure out a given mass of sand in a sequence of problems,
where in each case a balance and three masses are pro-
vided. As an example, they are shown that, given masses
of 20g, 9g and 5g, it is possible to measure out 24 g of
sand in pan B by placing the 20 g and 9 g masses in pan
A, the 5 g mass in pan B and then pouring sand into pan
B until it balances. Table 1 shows the sequence of prob-
lems used — and the solutions provided by the majority
of pupils, showing algorithmic fixation. In each case it is
possible to measure out the sand by the same procedure
as in the given example. So a routine is established in
the early examples: find the sum of two masses in pan A
and subtract the third mass to give the required amount of
sand. Only a small number of pupils, having established
this procedure, then deviate from it in problems 7, 8 and
10, where a more elegant or more efficient solution is pos-
sible. Even in the last problem in the sequence, where a
20 g mass is provided, about 90% of pupils propose that
the 20 g of sand be obtained by placing the 32g and 8 g
masses in pan A and the 20 g mass in pan B! Those
pupils, who, having established a routine that works, con-
tinue to hold in their minds the possibility that a more
desirable alternative may be available, are judged to show
more creativity in their thinking.

Table 1:
Sequence of problems in “Weights”
and solutions showing algorithmic fixation
masses | mass of how to do it
available sand
pan A pan B

1. 209,5 24 20,9 5
2. 16,7,3 12 16,3 7
3.1 2,50,40 12 50,2 40
4.1 5,55,50 10 5,55 50
5.1 14,113 6 14,3 11
6. 81,7,8 80 81,7 8
7.1 55,10,5 60 55,10 5
8.1 7,610 3 7,6 10
9.1 30,20,8 18 30,8 20
10.]| 32,20,8 20 32,8 20
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2.2.2 Cuts

Similar patterns of thinking in a geometric context are
shown in this task. In a sequence of problems pupils are
asked to draw lines on a rectangle to divide it up into a
given number of parts of the same size and shape. In an
example they are shown that 1 line is required to divide
the rectangle into 2 equal parts. Then the subsequent prob-
lems ask for: 3 parts, 5 parts, 7 parts, 9 parts and 6 parts.
The majority of pupils establish a procedure in the first
few examples and continue to use this: 2 lines, 4 lines, 6
lines ... with the number of lines one less than the number
of parts. Only the occasional pupil shows what might be
recognised as creative thinking by breaking from this al-
gorithmic fixation, obtaining 9 equal parts with 4 lines (2
horizontal and 2 vertical) and 6 equal parts with 3 lines.

2.3 Creative thinking demonstrated

One further example serves to demonstrate that the think-
ing shown by the pupil who overcomes fixations of the
kind discussed above and deviates from the stereotypi-
cal responses in mathematical tasks may justifiably be
described as creative. In a task called “Areas” pupils
are given a number of incomplete four-sided figures and
asked to complete them in order to make the areas sat-
isfy various conditions. For example, in Fig.3 they are
asked to draw the other two sides of the four-sided fig-
ure so that the area of the figure is less than 2cm?. The
self-restrictions that are evident in the way most pupils
fail to find a solution in this task include the tendency
to draw only rectangles or only convex quadrilaterals.

Fig. 3: Two sides of a four-sided figure with
area less than 2 cm?

The few pupils who manage to find the intended cor-
rect solution shown in Fig.4 show that they are not
imposing this kind of self-restriction on their thinking.
One pupil surprised the author by the solution shown
in Fig.5. This surely justifies the description “creative”.

Fig.4: The intended correct solution to the “Areas” task
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Fig. 5: An unexpected creative solution to the “Areas” task

3. Divergent production

The second major construct in creativity that can be ap-
plied readily to mathematics relates to the notion of di-
vergent production. Divergent production tasks have their
origin in the work of American researchers such as Tor-
rance and Guilford in the fifties and sixties. In these tasks
a pupil is given an open-ended situation to which many
possible responses may be made. A number of researchers
have developed examples of similar, open-ended mathe-
matical tasks that allow pupils to show divergent thinking
in their responses (for example: Haylock, 1987b, Pehko-
nen, 1992; Singh, 1990; Tuli, 1985, Zosa, 1978).

3.1 Criteria for judging divergent production

A typical Torrance test would be to think of many pos-
sible uses for a tin can. The subject’s responses are then
assessed for creativity in terms of fluency (the number of
acceptable responses), flexibility (the number of different
kinds of response) and originality (the statistical infre-
quency of the responses in relation to the peer group).
In a mathematical context the criterion of fluency often
seems less useful for indicating creative thought than flex-
ibility. For example, if asked to generate questions with
the answer 4, a pupil might start with “5 — 17, “6 — 27,
“7—3”, and continue this sequence indefinitely, thus scor-
ing highly but not showing any creativity. Flexibility, on
the other hand, focuses on the number of different ideas
used. So generally it is found that the responses in di-
vergent production tasks in mathematics can be rewarded
using the criteria of flexibility and originality. Another
highly-significant criterion is “appropriateness’: a mathe-
matical response may be highly original but it is of little
use if it is not appropriate within accepted mathematical
criteria. For example, the response /8 as a question gen-
erating the answer 4 may be original, but it is also wrong!
This last criterion raises one of a number of conflicts and
paradoxes involved in the notion of mathematical creativ-
ity in the context of schooling. At times a teacher (or
researcher) may find it a difficult matter of judgement in
deciding how to respond to a pupil who shows imagination
and originality mixed in with an irritating level of inac-
curacy. There may be, therefore, something of a conflict
between accuracy and creativity. Similar conflicts may oc-
cur between teaching mathematical routines and encourag-
ing the willingness to break from stereotyped procedures,
and between being systematic and being flexible (Haylock,
1985).
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3.2 Criteria for a good divergent production task

In the development of divergent production tasks the au-
thor has identified six criteria for a task to be effective in
revealing creativity and in distinguishing between pupils in
a particular population in terms of the creativity of their re-
sponses: (1) The pupils’ responses must show that a range
of mathematical ideas have been used. (2) At least twenty
appropriate responses are possible for these pupils. (3) The
pupils’ responses should show a consistent interpretation
of the instructions in the task. (4) There should be several
obvious responses that can be obtained by most pupils. (5)
There should be a number of appropriate responses that
are obtained by relatively few pupils. (6) These original
responses should have a degree of face validity for indi-
cating creative ability in mathematics and they should not
be mathematically trivial.

3.3 Categories of divergent production tasks in mathe-
matics

Three categories of open-ended, divergent-production
tasks, meeting the criteria above, that have been identified
and used by the author are: (i) problem-solving, where the
pupil is given a problem that has many solutions and in-
vited to find as many different and interesting solutions
as he can; (ii) problem-posing, where the pupil is given
a situation and invited to make up as many interesting
mathematical questions as possible that can be answered
from the given data; (iii) redefinition, where the pupil is
required repeatedly to redefine the elements of a situation
in terms of their mathematical attributes. These are not
presented as hard-and-fast categories, but as a framework
for generating tasks that might reveal useful divergent-
thinking in mathematics.

3.3.1 Divergent production in a problem-solving task
There is a well-established link between the processes of
problem-solving and creative thinking (Weisberg, 1988).
Given the significance of problem-solving in mathemat-
ics it is natural to start by constructing divergent produc-
tion tasks in this field that require the pupil to solve a
problem — but this will be a problem with many possi-
ble solutions. An example of a problem-solving task in
mathematics that can reveal divergent thinking is: given
a nine-dot centimetre-square grid draw as many shapes
as possible with an area of 2 cm?, by joining up the dots
with straight lines. About 98% of pupils produce the eas-
iest solution: a rectangle 2 cm by 1 cm. Fig. 6 shows four
of the other possible solutions, with the percentages of
11-12-year-olds that have been found to produce these re-
sponses. Solutions like the first one shown can be obtained
by a straightforward combination of square units and half-
squares (triangles). Most pupils come up with a number
of these. More difficult appear to be those solutions like
the second one shown, where one of the internal angles is
315°. Divergent thinking is shown in the third example,
where one of the lines used joins two non-adjacent points
on the grid. The solutions that require the most creative
thinking would appear to be those like the fourth example,
where these two ideas are combined.
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A% 175 Tk 15,

Fig. 6: Four shapes with area 2cm?, with
percentages of 11-12-year-olds obtaining them

Considerable ingenuity and imaginative thinking was
shown by one pupil who devised the solution shown in
Fig. 7. 1t is rare in conventional mathematics for pupils to
have the opportunity provided by more open-ended prob-
lems of this kind to demonstrate such truly creative think-
ing in mathematics.

Fig. 7: A highly-creative idea for a
shape with an area of 2 cm?

3.3.2 Divergent production in a problem-posing task

Problem-solving has always been central to mathematics
education, but a number of researchers, such as Silver
(1994, 1995) and Stoyanova & Ellerton (1996), have re-
cently been exploring the significance of problem-posing
in learning mathematics. Problem-posing situations can
provide opportunities for pupils to demonstrate consid-
erable creativity. For example, pupils might be given a
scattergram showing the numbers of boys and girls in the
families of the children in a class and asked to make up as
many questions as they can that can be answered from the
graph. Experience suggests that it is advisable sometimes
for pupils to be asked to answer their own problems, in
order to make their intentions clear. In one task with a
problem-posing aspect, for example, pupils are asked to
write down other results that can be deduced easily from
a given result: i.e. 23 x 35 = 805. So they pose questions
that can be answered easily from the given information,
but also provide the answers. Some of the responses of
two mathematically high-attaining pupils who had scored
equally high marks on a standardised test of mathemati-
cal attainment are shown in Table 2. Pupil A used at most
three ideas in generating new questions from the given
result: that one number can be multiplied by 10; that the
other number can be multiplied by 10; and that you can
go on doing this repeatedly. Pupil B, by contrast, showed
considerable flexibility and originality in generating a total
of 26 responses, drawing on a wide range of mathemat-
ical ideas: multiplication by 10, commutativity, division
as the inverse of multiplication, doubling, halving, deci-
mals, brackets, and so on. The fact that two pupils such
as these, with equal levels of attainment in conventional
mathematics tests, demonstrate such markedly differing
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performances in a divergent production task lends support
to the view that these tasks may reveal some aspects of
creative ability in mathematics.

Table 2:
Some responses of two pupils of equal
mathematical attainment to a problem-posing task

Pupil A Pupil B
230 x 35 = 8050 230 x 35 = 8050
2300 x 35 = 8500 35 x 23 =805

230 x 350 = 80500
23000 x 35 = 805000
230000 x 35 = 8050000 |70 x 23 = 1610
2300000 x 35 = 80500000 |46 x 35 = 1610
2300000 x 35 = 805000000 | 1610 = 70 = 23

805 = 23 =35

(20 +3) x 35 =805
(70 + 2) x 23 = 805

17.5 x 23 =402.5
35 x 11.5 = 402.5

3.3.3 Divergent production in a redefinition task

The term “redefinition” was coined by Guilford (1959) as
a trait of creativity, referring to the ability to give up old
interpretations of familiar objects to use them in a novel
way. In mathematics it is often useful to be able to rein-
terpret the component parts of a problem situation. So, for
example, a particular line segment in a geometric prob-
lem might be seen first as the side of a triangle, then as
the radius of a circle, then as half of the diameter, and
so on. Wallach and Kogan (1965) in their classic study
of creativity and intelligence, used a task in which pupils
were asked to state all the ways in which a carrot and a
potato are alike. To produce many and varied responses
this requires continual redefinition of the potato and the
carrot in terms of their attributes and functions. Similar
tasks using this notion of redefinition suggest themselves
in the content of mathematics. For example, in one such
task pupils are asked to state all the things that are the
same about the two numbers 16 and 36. Such tasks as
this again reveal considerable variation between pupils in
terms of flexibility and originality. One pupil scoring 140
on a standardised mathematics attainment test produced
only these three responses to this task: both have 6s in
them; both are multiples of 2; both are multiples of 4. By
contrast, another pupil with the same score for mathemat-
ics attainment produced these responses: both are even;
both divide by 2; both divide by 4; both have a 6 in them;
both less than 40; both above 15; both whole numbers;
both not prime; both factors of 576.

4. Relationship of mathematical creativity to mathe-
matical attainment

It is clear from the examples quoted above that pupils of
equal mathematical attainment can show vastly-different
performances on tasks designed to reveal mathemati-
cal creativity. The author’s research (Haylock, 1987a)
suggests that mathematical attainment limits the pupil’s
performance on both overcoming-fixation and divergent-
production tasks, but does not determine it. Low-attaining
pupils do not have sufficient mathematical knowledge and
skills to demonstrate creative thinking on the kinds of
tasks described in this report. The higher the level of at-
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tainment the more possible it becomes to discriminate be-
tween pupils in terms of these indicators of mathematical
creativity. The pupils with the greatest facility for over-
coming fixation and for thinking divergently are usually
in the very highest attaining group — but even in this group
there are significant numbers of pupils who show very low
levels of these kinds of creative thinking in mathematics.
Significant differences are identified between these math-
ematically high-attaining, low-creative pupils and their
high-attaining, high-creative peers, in that the first group
tend to be more anxious about mathematics, to have low
self-concept, to be narrow coders and to be less willing to
take reasonable risks in mathematics. A challenge for fur-
ther research in this area is to identify teaching approaches
that are effective in moving these pupils who have good
mathematical knowledge and skills away from their over-
reliance on routines and stereotypes and their rigidity in
thinking about mathematical situations towards the kinds
of thinking that have been identified above as representing
creativity in mathematics in the school context.
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