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Interaction Analysis of Mathematical
Communication in Primary Teaching:
The Epistemological Perspective!

Heinz Steinbring, Dortmund

Abstract: Communication between students and teacher in the
mathematics classroom is a form of social interaction which fo-
cuses on a specific topic: mathematical knowledge. This knowl-
edge cannot be introduced into classroom interaction “from the
outside”, but grows through the communicative process, in the
course of interactive exchanges between the participants of dis-
cussion. Although mathematical communication must be seen
and analysed in the same way as any other form of commu-
nication, the particularity of interactive constructions of mathe-
matical knowledge and its specific social epistemology within
the context of teaching processes has to be taken into con-
sideration. Also, the institutional influences of school institu-
tions and those of teaching (analysed in the frame of general
socio-interactive research approaches) must be considered. An
epistemology-oriented interaction research approaches the speci-
ficity of a mathematical classroom and communication culture
in its analyses.

Kurzreferat: Interaktionsanalyse der mathematischen Kommu-
nikation im Grundschulunterricht. Die epistemologische Per-
spektive. Die Kommunikation zwischen Schiilerinnen, Schiilern
und Lehrerin im Mathematikunterricht ist als soziale Interaktion
zugleich mit einem spezifischen Inhalt befafit: dem mathema-
tischen Wissen. Dieses Wissen kann nicht unverdnderlich “von
auBlen” in den Unterricht hineingegeben werden, es entsteht im
Kommunikationsprozess durch den interaktiven Austausch zwi-
schen den Beteiligten. Obwohl die mathematische Kommunika-
tion einerseits wie eine jede andere Kommunikationsform zwi-
schen Menschen betrachtet und analysiert werden kann, muss an-
dererseits die Besonderheit der interaktiven Konstruktion mathe-
matischen Wissens und seiner “Epistemologie im Kontext der
Unterrichtsprozesse” beriicksichtigt werden. Die epistemologisch
orientierte Interaktionsforschung verfolgt in ihren Analysen das
Problem der Spezifik einer mathematischen Unterrichts- bzw.
Kommunikationskultur.

ZDM-Classification: C52, E22, F32

1. The role of mathematical knowledge in interaction
research
The qualitative analysis of mathematical communication
always has to start — explicitly or implicitly — from as-
sumptions about the status of mathematical knowledge.
There are different ways of coping with this requirement.
There could be a general assumption, to observe and to
analyse mathematics teaching in the same way as ev-
ery other form of teaching, without taking into account
the particularities of mathematical knowledge. Or another,
typical, assumption could be that mathematical communi-
cation is, indeed, determined by the specific subject matter
dealing with an “objective”, correct subject matter knowl-
edge, and therefore the analysis of mathematical commu-
nication could reach an unequivocal assessment as “true /
false” or “good / bad teaching”.

A fundamental assumption for different research ap-
proaches to mathematical interaction is the idea that the
mathematical subject matter cannot be introduced into the
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teaching-learning process as a ready made curricular prod-
uct, but that the subject matter knowledge can only be
mutually generated during the interactive process. This
assumption contains the following contradiction: Teach-
ing is an activity oriented towards a pre given goal which
requires the step by step administration of subject mat-
ter to students. In contrast to this, learning is seen as an
active process of construction and development, which,
through interactivities, is the basis for the emergence of
new knowledge. When starting from this supposition the
central objective for interpretative research is to recon-
struct and understand interactive knowledge development
in the mathematics classroom as an evolving autonomous
process dependent on internal conditions. Ready made
mathematical knowledge cannot be the measure to assess
success or failure of the teaching-learning process.

In the course of interaction analysis, interpretations must
be made of the verbal and non-verbal communications of
interacting persons. These qualitative interpretations have
to be consistent in some way; often there will not only
be one “true” explanation but several, alternative, plausi-
ble interpretations of analysed communications (cf. Voigt
1994). These interpretative analyses bring to light “typi-
cal” patterns of interaction; and comparative analysis of
several “similar” teaching episodes can provide a more
secure data base for decisions about the chosen interpre-
tation of observed communication (Krummheuer 1997).

Epistemology-based interaction research in mathemat-
ics education proceeds on the assumption that a specific
social epistemology of mathematical knowledge is consti-
tuted in classroom interaction and this assumption influ-
ences the possibilities and the manner of how to analyse
and interpret mathematical communication. This assump-
tion includes the view on mathematics explained above:
Mathematical knowledge is not conceived as a ready made
product, characterised by correct notations, clear cut def-
initions and proven theorems. If mathematical knowledge
in learning processes could be reduced to this description,
the interpretation of mathematical communication would
become a direct and simple concern. When observing and
analysing mathematical interaction one would only have
to diagnose whether a participant in the discussion has
used the “correct” mathematical word, whether he or she
has applied a learned rule in the appropriate way, and
then has gained the correct result of calculation, etc. The
epistemology-based interaction research approach under-
stands mathematical knowledge and mathematical con-
cepts neither as concrete, material objects, given a pri-
ori in the “external” reality, nor as independently exist-
ing (platonic) ideas. For the individual cognitive agent
mathematical concepts are “mental objects” (Changeux &
Connes 1995; Dehaene 1997); in the course of commu-
nication mathematical concepts are constituted as “social
facts” (Searle 1997) or as “cultural objects” (Hersh 1997).
From an evolutionary point of view, mathematical con-
cepts develop as cognitive and social theoretical knowl-
edge objects in confrontation with the material and social
environment.

Mathematical concepts are constructed as symbolic re-
lational structures and are coded by means of signs and
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symbols, that can be combined logically in mathematical
operations. The intended construction of meaning for the
unfamiliar, new mathematical signs, by trying to build up
reasonable relations between signs and possible contexts
of reference and of interpretation, is a fundamental feature
of an epistemological perspective on mathematical class-
room interaction. This intended process of constructing
meaning for mathematical signs is an essential element
of every mathematical activity whether this construction
process is performed by the mathematician in a very ad-
vanced research problem, or whether it is undertaken by a
young child when trying to understand elementary arith-
metical symbols with the help of the position table. The
focus on this construction process enables us, to see math-
ematics teaching and learning at different school levels as
an authentic mathematical endeavour.

2. The creation of new and generalised mathematical
knowledge

The particularities of an epistemology-based approach to
classroom interaction research can best be described with
the help of exemplary teaching episodes dealing with the
construction and justification of new mathematical knowl-
edge. The research project “Social and epistemological
constraints of constructing new knowledge in the mathe-
matics classroom” (funded by the German Research So-
ciety, DFG; see Steinbring et al. 1998; Steinbring 1999)
investigates the problem of how children in primary math-
ematics classrooms are able to construct and explain new
knowledge with their own stories and arguments interac-
tively.

Several teachers participated in this project, perform-
ing short experimental teaching units of 4 to 5 lessons;
the young students (age 8 and 9) worked on (mathemati-
cal) problems within mathematical learning environments.
One type of learning environment offered a specific con-
text for the children to elaborate meaning or offer a first
justification for arithmetical patterns. Such children are
not in the position to use algebraic notation or opera-
tions to “abstract” more general relationships and formulae
from arithmetical learning environments. The following
question arose: How does new, more general knowledge
emerge? Is it a necessary precondition for the introduction
of new knowledge first to supply the new terminology,
notation and definitions, which only then could permit
its development and description? Or does the process of
constructing new knowledge take place in a completely
different manner without having to rely on the notation
and formal definitions?

This problem is discussed in more detail with the help
of an arithmetical example from elementary mathematics
teaching (grade 2 or 3). The children are asked to work on
the following question. The following “rhombus numbers”
on the 1 x 1 table are investigated (cf. Wittmann & Miiller
1990).

Taking four adjacent products one can calculate a “rhom-
bus number” in the following way: Subtract the “vertical”
sum of the two products from the “horizontal” sum of
the two other products (Fig. 2). Several “rhombus num-
bers” are calculated in the 1 x 1 table. All rhombus
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Fig. 1: The one-times-one-table

2>

(2-843-9)—(3-8+2-9)=
(16 +27)— (24 +18) =
43-42=1
Fig. 2

numbers are equal to 1. Why? In what way can the new
knowledge, the new arithmetical relation, behind these
rhombus numbers be described, developed, understood
and justified? An “experienced” mathematician would
perhaps at once approach this problem with “letters”. “Re-
placing numbers by letters” could be a first solving strat-
egy in which the concrete, specific numbers are exchanged
with a new, general notation (algebraic letters). Is it possi-
ble simply to construct the new knowledge by introducing
new, general descriptions and notation (Fig. 3)? Obviously
we cannot do so as. It is not sufficient only to use a new
notation. It is more important to take an existing relation
between the given numbers into account (Fig. 4).

32
S
(ccb+a-d)—(a-b+c-d)=

—(a—c)-(b—d) =277

Fig. 3

(a—1b+ab+1)—ab—(a—1)(b+1) =
ab—b+ab+a—ab—ab+b—a+1=1

Fig. 4

Normally this can be done using the new terminology to
represent the “difference of 1” between several numbers.
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Then the rules of algebra are used and the result is deter-
mined. This indeed leads to the solution “1” in a general
manner. Has the new knowledge relation been understood?
Algebra automatically furnishes a result but without nec-
essarily or substantially increasing the insight into the new
relation. One aspect of this example is already important:
the simple replacement of concrete numbers by algebraic
signs is insufficient. New knowledge inevitably needs the
identification of the arithmetical relation: Certain numbers
differ by 1. Why is this important for the problem ques-
tion? Is it the case across the whole arithmetical pattern?

The significant underlying mathematical relation can al-
ready be identified in the frame of the arithmetical problem
situation and it is the fundamental base for the construc-
tion and justification of new knowledge. Let us compare
the relationships between the numbers in this arithmetical

B

Fig. 5

We observe: The left product in the horizontal row con-
tains 1 times 5 less than the product above it in the vertical
column; the right product in the horizontal row contains
1 times 6 more than the lower product in the vertical col-
umn. Therefore the horizontal row contains 6 - 5 = 1 more
than the vertical column. We have only used the relation-
ships “1 - 5— less” (or “I times the second factor less”)
and “1 - 6— more” (or “1 times the second factor more”
(the two second factors just differ by 1)). Unlike the mere
meaning of concrete arithmetical signs by letters, these
important arithmetical relationships, now identified, form
the central elements of the mathematical justification.

(<
>

These arithmetical relations are the proper meaning that
could also offer deeper understanding of the algebraic pro-
cedure. The algebraic situation could be seen in an analo-
gous way to the arithmetical interpretation: The left prod-
uct in the horizontal row contains 1 times b less than the
product above in the vertical column; the right product in
the horizontal row contains 1 times (b+ 1) more than the
lower product in the vertical column. Therefore the differ-
ence between the horizontal sum and the vertical sum is
constant: b+ 1 — b = 1. The choice of algebraic notation
was not arbitrary but it had additional advantages with re-
gard to the underlying important arithmetical relationship.

In our example the specific property of rhombus num-
bers (always having the constant value 1) can be conceived
as a central property of the new knowledge. This new
knowledge only emerges by the construction of essential
relations, and this necessarily has to be done in the ex-

Fig. 6
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isting frame of mathematical structures and notation. The
construction of a new mathematical relation in the course
of knowledge development precedes the mere naming of
the concrete numbers by more general signs.

How are these considerations connected with the
epistemology-based approach to interaction analysis? Since
the new mathematical knowledge cannot simply be con-
structed in new notation and ready made definitions, but
relies upon identifying relevant mathematical relations
within the context of existing mathematical structures and
expressions, a main consequence is that primary children
in learning mathematics have, and are able, to approach
and bring forward their descriptions and constructions of
new mathematical knowledge with their own words and
ideas. Hence, when observing children’s statements, it is
impossible to deduce a construction or a justification of
new knowledge from the use of abstract notation, univer-
sal definitions or the introduction of variables immediately.
The students shall, must and can only try to make attempts
to justify by using their own descriptions and covered in
the expressions they have used until now.

But when the young students describe new relations and
new knowledge with the old exemplary interactively, and
concrete interpretations and references partially, an epis-
temological analysis is faced with the problem of finding
out the extend to which these documented statements and
contributions, with their customary, familiar descriptions,
contain justifications of new knowledge or whether they
are mere repetitions of knowledge already known medi-
ated by the use of familiar expressions. A very careful
analysis is needed to be able to recognise initial hints and
potential relational structures in the children’s personal
remarks that permit the attribution of an intention aiming
at a new mathematical relation within the existing mathe-
matical problem field.

3. Epistemological and communicative aspects in in-
teraction analysis

The construction of new mathematical knowledge is con-
stituted by establishing relations between signs / symbols
(diagrams, operational signs etc.) and objects or reference
contexts (concrete and abstract ones). The new, or partially
unknown, signs and symbol systems are more and more
enriched with meaning by referring them to certain (con-
crete or also structural) reference contexts. In the frame
of the epistemology-oriented interaction research the epis-
temological triangle serves as a central, theoretical instru-
ment for describing and analysing processes of construct-
ing new mathematical knowledge (Steinbring 1989, 1991,
1999).

object/ reference q———psign /
context symbol

™~

concept

Fig. 7: The epistemological triangle

The particularity of this epistemological triangle con-
sists in the specific reciprocal relationships between the
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three corners “sign / symbol”, “object / reference context”
and “concept”. These relations are not explicitly regulated,
rather they form a balancing system. As knowledge devel-
ops interactively, the interpretation of sign systems and
of corresponding reference contexts will change and mod-
ify. It is important to notice that the object or reference
context is not given a priori in a definite and unequiv-
ocal manner, but changes into a structural setting in the
course of knowledge development. From this perspective,
mathematical meaning can be seen as the interpretation
of relatively new and unknown signs with reference to a
more familiar (structural) reference context.

The epistemological triangle expresses the ways in
which mathematical signs are endowed with meaning in
mathematical interaction by referring these signs to spe-
cific contexts of reference. Mathematical interaction in
the everyday classroom can be regarded as a process of
communication between different participants. How could
communication be characterised in a theoretical way? The
German sociologist Luhmann (1997, 1996) takes commu-
nication as the fundamental and constitutive element of
any social system. “Communication is the final element
or the specific operation ... of social systems. It is the syn-
thesis of three selections: (1) conveyance; (2) information;
(3) understanding of the distinction between information
and conveyance” (Baraldi, Corsi & Esposito 1997, p. 89).
From this basic theoretical perspective Luhmann describes
society and all its social subsystems. In what follows, I
only refer to the central “mechanism” of communication
insofar as it is relevant to the theoretical approach.

“One can speak of communication, when Alter understands, that
Ego has conveyed an information; this information can then be
attributed to him. The conveyance of an information (Alter says
for instance “It rains”) is not itself an information. Communica-
tion only can realise this as an information, if it is understood:
if the information (“It rains”) and Alter’s intention for this con-
veyance (Alter for example will cause Ego to take an umbrella
with him) are seen as distinct selections. Without understanding
there cannot be observed any communication: Alter waves to
Ego, and Ego walks on quietly, because he has not understood
that the waving was a greeting. The understanding realises the
fundamental distinction of communication: the distinction be-
tween conveyance and information” (Baraldi, Corsi & Esposito
1997, p. 89).

When communication takes place, one can observe a se-
quence of conveyances and reconstruct the information
that is different from these conveyances, by trying to iden-
tify the understanding in this process. Luhmann explains
the difference between conveyance, information and un-
derstanding with the help of de Saussure’s distinction be-
tween signifier (signifiant), signified (signifi¢) and sign
(signe) (cf. Fig. 8). Accordingly, in the course of interac-
tion “signifiers” are conveyed that have to be distinguished
from the intended information (the “signifieds”), and only
the observation of this distinction can produce understand-
ing with the production of a “sign”.
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si_gniﬁe,d 4——p signifier
signifie signifiant
sign
signe

Fig. 8: The semiotic triangle according to de Saussure

The conveyor can only convey a signifier, but the signified
that is intended by the conveyor, which alone could lead
to an understandable sign, remains open and relatively
uncertain; in principle it can only be constructed by the
receiver of the conveyance, in a way that he or she himself
or herself articulates a new signified.

“... we start with the situation of the receiver of the conveyance,
hence the person who observes the conveyor and who ascribes
to him the conveyance, but not the information. The receiver of
the conveyance has to observe the conveyance as the designation
of an information, hence both together as a sign ....” (Luhmann
1997, p. 210).

The receiver must not ascribe the possible signified strictly
to the conveyor but he has to construct the signified him-
self; the signified and the sign is constituted within the
process of communication.

In this way, communication can become a self reproduc-
ing, living system, by the succession of one conveyance
after the other. And the central mechanism of communica-
tion consists in the following: The conveyances (signifiers)
of the teacher or of different students do not yet contain
the information (a signified); the distinction and conse-
quently the reference between signifier and signified can
only be established in interaction by the participants of
communication, otherwise communication cannot happen.
In contrast to this position, in mathematics teaching there
is often the tacit assumption that mathematical signifiers
possess one and only one definite signified. This assump-
tion can lead to a destruction of authentic mathematical
communication. There is the danger that the conveyance
already has to be taken as the information; no distinction
is made between the conveyance and the intended infor-
mation in mathematical communication.

The openness and potential ambiguity of conveyed sig-
nifiers in mathematical interaction is a necessary con-
straint for authentic mathematical communication: First,
the young students are only able to use the old, familiar
frame of notations and of descriptions for expressing the
intended new relations and new knowledge. The mech-
anism explaining the functioning of communicative sys-
tems, as elaborated in Luhmann’s theoretical position, ex-
plains and justifies this way of trying to grasp the intended
new knowledge by using old and familiar descriptions in
an open but changed way. That then has to be under-
stood in interaction by seeing the distinction between the
conveyed signifiers and the intended signified (the new
information) and thus constructing a new sign or a new
mathematical relation (conceptual aspect). Also, this theo-
retical approach to communication clearly states that there
is absolutely no other way of constituting new knowledge
in communication: there is no possibility of starting with a
perfect, abstract terminology (a system of signifiers) that
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would correspond in an unequivocal manner to a defi-
nite and precise system of signifieds; such a fixed linkage
between signifiers and signifieds would destroy the math-
ematical communication.

4. Children’s subjective construction of new knowl-
edge — epistemological analysis of two teaching episodes
Two teaching episodes (see Appendix) have been observed
and documented in the research project: “Social and epis-
temological constraints of constructing new knowledge in
the mathematics classroom” (funded by the German Re-
search Society, DFG; see Steinbring 2000). One objective
of this project was to question how children in primary
mathematics classrooms (grades 3 and 4) describe and de-
velop the construction and justification of new mathemati-
cal knowledge in their own words. The children worked in
arithmetical learning environments. The arithmetical prob-
lem field of the first teaching episode (grade 4) centred on
“number walls” (cf. Wittmann & Miiller 1990). Number
walls are constructed by first choosing four numbers to be
placed on the four stones at the base level,and then the
next level of three stones is filled by adding the two num-
bers immediately below. By using this rule of addition the
whole wall is filled with numbers.

100 | 80
|65|35|45|55|

Fig. 9

In this lesson the children had started with four numbers,
35, 45, 55, and 65, and they had tried to construct differ-
ent number walls by permuting these four numbers and
placing them in different ways. The task was to find out
different goal numbers at the top of the wall: What is the
smallest and what is the biggest number that can be so
“constructed”? The teacher then collected several number
walls the students had constructed, and put them on the
blackboard (see Appendix). The short episode addresses
the question: What are the reasons for the variation of the
top number when the base stones are exchanged?

The mathematical topic of the second episode (in a
mixed class of grades 3 and 4) was the arithmetical envi-
ronment of special “number squares”, so called “crossing
out number squares” (cf. Wittmann & Miiller 1990). These
number squares are constructed in the following way: First
one adds some numbers given in the border row and bor-
der column of a table (cf. Fig. 10).

+ 1319 | 4
10 § 23|19
12125
18

Fig. 10

The squares thus created have the following property:
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You can choose (or circle) in a (3 - 3) number square three
numbers arbitrarily but there must be one and only one
circled number in every row and in every column. The
sum of the three numbers chosen is always constant (cf.
Fig. 11, 12).

+J3]ols
10 @ 19 | 14
12 | 25| 21 [(i9)
18 | 31 (@) |22

Fig. 11

+ J13]9]4

10 | 23] 19
12 |@)| 21 |16
18 31@22

Fig. 12

The children discovered that the sum of three circled
numbers — they always spoke of the “magical number” —
is constant, here 66. In the course of this lesson the rela-
tion between the border numbers and the magical number
was discussed: The sum of the six border numbers was
equal to the magical number. The reason given was: Every
border number is “in play” only once when it contributes,
with one other border number, to the sum of three circled
numbers. In this short episode, this justification is first re-
peated together with a new aspect of argumentation; then
a student presents a completely new justification.

4.1 First episode: Relationships between the middle base
numbers and the goal numbers in a four level number
wall

At the blackboard the teacher displayed nine different
number walls (see Appendix), which — working in pairs —
the children had constructed. The systematic exchange of
the four base stones led to walls with big and small top
numbers.

1 174 Problem: Why does the top number remain
the same when by exchanging the two mid-
dle numbers the two border numbers in the

second level change?

The teacher points at the second and third stone, 45 and
35 (in the lower and in the middle number wall with top
number “360”: When these are exchanged then the sixth
stone, 80, remains the same. But when in the lower wall
the numbers 35, 65 on the third and fourth stone are ex-
changed, then in comparison with the middle wall there
would be a change in the seventh stone. But the top num-
ber remains the same: Why?
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Fig. 13

2.1 175 Timo compares the corresponding border num-

bers of two number walls: They equalise.

Timo points at the fifth and the seventh stone in the lower
number wall, both 100. Then he also points at the fifth
and the seventh stone in the middle wall: 110 and 90. He
states that this equalises, once ten more, and once ten less.

|2.2 | 176177 | Nele repeats the explanation. |

Nele once again explains this relation. She points at 110
on the seventh stone of the middle wall, and she says,
the tens are distributed differently: Here 10 more and here
(fifth stone) 10 less. In the lower wall the fifth and the
seventh stone are equal.

2.3 |178-185 The difference of “4-10” and “—10” is

noticed.

The teacher compares the “lower” fifth stone with the
“middle” fifth stone and says: 10 less. She writes “—10”
onto the fifth stone of the middle wall.

Then she points questioning at the seventh stone “110”
of the middle wall. Children call “10 more”, the teacher
writes “+ 10” onto the seventh stone of the middle wall.
Subsequently another student remarks similar differences
of ten in the two numbers of the third level of the walls.

360

170 | 190

-10 +10
90 80 | 110

55 [ 35 | 45 | 65

Fig. 14

Elements of an analysis of the first episode

The starting problem situation of this episode can be mod-
elled with the help of the epistemological triangle in the
following way:

See Fig. 23!

(Explanation of terminology: The circled numbers 1, 2, 3,
etc. indicate the sequence of direct pointing at different
stones in different number walls).

Analyses

By posing the problem question and simultaneously
pointing at different stones in two number walls the
teacher constructs a new mathematical sign: a new arith-
metical pattern in two number walls with the same top
number “360”. This new sign now has to be explained and
justified: Why does the top number remain unchanged de-
spite the fact that the border numbers in the second level
of the wall are different?

Timo argues in the following way: At the fifth and the
seventh stone in the lower number wall there is always
“100”, and correspondingly there is “90” and “110” at the
fifth and the seventh stone in the middle number wall.
These numbers compensate for each other, one being 10
more, and the other 10 less.

The construction of a mathematical sign

Fig. 15

Implicitly the existing numbers are compared with the
number “100”. The question as to what could be the rea-
son for this “arithmetical equality” of “10 more” and “10
less”, is neither posed nor do the children ask why this
should lead then to the same top number (for instance
because these are border numbers that are added in the
construction of number walls only one time). Timo’s state-
ment contains observable arithmetical regularities, but no
further justifying relation for this invariance of the top
number is mentioned.

Nele explains the constancy of the top numbers in a sim-
ilar way. She seems to take up the remark the “ten” from
Timo’s statement and she says that the tens are differently
distributed. She too states that the fifth stone (middle wall)
contains “10 less”, and the seventh stone “10 more”. The
corresponding stones in the lower wall are equal, she says.
This contribution is a repetition of the observation of arith-
metical differences and “similarities” in the given number
pattern. Here too, no “deeper” reasons are provided as to
why this “arithmetical symmetry” should emerge, and why
it could give rise to the constancy of the top number.

The construction of a mathematical sign
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The teacher emphasises the “arithmetical symmetry” as
mentioned in their own words by both children; she re-
peats this observation and then writes “—10” and “+10”
onto the fifth and the seventh stone. In the end another stu-
dent transfers this comparison to the third level of number
walls.

The construction of a mathematical sign

4.2 Second episode: Relationships between the border
numbers and the magical number in a 3 X 3 number
square

At the end of this lesson, just as this episode (see ap-
pendix) starts, the teacher asks for repetitions of the argu-
ment as to why the magical number “66” remains constant.
First Judith repeats her justification with other words. She
again uses the description, that every border number is just
“one time in play” in the additive construction of a circled
number. Here she adds a new aspect to the argument: ...
and therefore you may ... circle in a row only one num-
ber. Yes, because otherwise a number would be included
twice” (396). Judith gives a kind of “indirect” reasoning:
If you would have two circled numbers — which is strictly
forbidden by the rule of circling numbers in the number
square — then one would have a border number in two
cases. This then shows why one border number is indeed
only one time “in play” with the circled numbers.

+ 13 1 9 | 4

10 23|19 | 14

12125]21 |16

18 Q31127 |22

Fig. 18

Later Kim presents a completely new justification not
at all mentioned before.

8.4 (407411 Kim’s argument: One can break the mag-
ical number 66 into six (new) border
numbers; then one can use these to con-
struct a number square with the same

magical number.

Kim advances her argument by constructing any adequate
number square with the help of the magical number “66”.
She introduces a partition of 66 into any six terms of a
sum: “ehm, mh, you only need to break the sixty-six to
pieces, into six numbers. And then you have to, when it
is snipped into pieces, one would, one should then place
them simply somewhere there still, and then calculate the
numbers.” (408). She proposes to separate 66 into six
terms of a sum (”snipped into pieces”), to order these in
some way as border numbers (“place them simply some-
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where”) and then calculate the numbers of the 3x3 square
by addition of border numbers (’then calculate the num-
bers”).

Subsequently certain numbers have to be circled accord-
ing to the known algorithm and their sum has to be cal-
culated: “And, and, then, then, then one only has to do
this with the number square. And then you get always
sixty-six.” (408).

Kim is asked to explain her argument more concretely:
She says that three numbers should be placed at the bor-
der row and the other three at the side, the border column
(410). Kim again then refers to the given exemplary num-
bers when explaining the calculation of numbers in the
square: “And then one has somehow to calculate, there
for instance nine and ten makes nineteen” (410). She then
remarks simply — as before: “And then, and when one
would make this, one would always get sixty-six” (410).
Here she does not again explain that all border numbers
appear exactly one time as a term in an addition. The
teacher acclaims Kim’s contribution and in this way con-
firms the justification.

Elements of an analysis of the second episode
As a kind of recapitulation several students again formu-
late the explanations for the “trick”. First Judith repeats
her justification with new descriptions she had developed
before.

From an epistemological perspective, Kim’s argument
starts with a sort of “inversion” of the statement “The sum
of the border numbers is equal to the magical number”:
“A given magical number (66) can be decomposed into six
(arbitrary) terms of a sum, and these six numbers can be
used as border numbers for the construction of a number
square.”

sign /

symbol
( ‘
66=

N v 7 v

2Ol

object / reference
context

arithmetical
relations in the

number square

concept
Fig. 19

In her argument Kim proposes the following construc-
tion: (1) Decompose 66 into six arbitrary numbers; (2)
Place these six numbers on the border; (3) “Calculate”
the number square; (4) Perform the crossing out algorithm.
Kim does not again explicitly mention the relationship be-
tween two border numbers and one circled number; she
states (5) The starting number 66 is the magical number.
This completes her argument. The vagueness of the first
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version of her argument (408) is partially concretised and
confirmed in the repetition of the argument (410) with ref-
erence to examples. This allows the display, in the episte-
mological triangle, of the construction of the mathematical
object “general (magical) number square built up from a
pre given magical number”.

The presentation of the new mathematical “sign / sym-
bol” as given in the epistemological triangle in the form
of an abstract diagram has not been constructed by Kim
in this way; she has developed a verbal description of this
new symbol. The relation between “object / reference con-
text” and “sign / symbol” is also exchangeable in this ex-
ample. New structures are imposed into the given number
square, and conversely, concrete numbers and arithmeti-
cal problems from the given reference context are used to
explain new and more general relations.

5. Concluding remarks: Comparing the analysis of the
two episodes

During the first episode the teacher formulates an open
— partially inapplicable — problem question; nevertheless
the children react in the expected manner. Using an arith-
metical regularity, Timo constructs a possible justifying
relationship: He compares the fifth and the seventh stone
and he states that these two stones “compensate”, once ten
more and once ten less. He says “That’s why, ... “, mean-
ing that therefore the top stone remains unchanged. Also
Nele uses this relation to justify the invariance of the top
number: On both stones in question the tens are differently
distributed, and therefore they (together) equal, and that
is the reason for the top number remaining unchanged.
The teacher confirms these proposals writing “—10” and
“410” on the fifth and the seventh stone.

The interactively constituted argument can be sum-
marised in the following way: The top stone remains un-
changed because — despite their change — the border stones
in the second level of the wall “compensate”. But this re-
mark is only a first possible aspect of a complete argument.
The students have observed and stated the “compensation”
of two numbers. But what are the reasons for this com-
pensation, what kind of justification could be given? And
further: Why does this “compensation” lead to the invari-
ance of the top number? Obviously the lower number wall
at the right (with top number “380”, see Appendix) pos-
sesses in the fifth and the seventh stone the same kind
of “compensation” as the number wall discussed in the
episode, however it has a different top number. There must
be additional conditions. Or, is it also possible to justify
the invariance of the top number on the basis of a com-
pensation between the fifth and the sixth stone?

The arguments developed in this interaction refer to the
arithmetical surface structure of the numbers in this num-
ber wall; an arithmetical compensation is used to con-
clude the invariance of the top number. But only the help
of deeper relations responsible for the construction of the
number walls would permit the argument to be completed.
During the second episode Kim constructs a new relation-
ship between border numbers, magical square and magical
number. Whereas up to now the direction of argumenta-
tion started from the given 3 x 3 number square looking at
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the magical number to be calculated as the sum of three

circled numbers and then at the border numbers generat-

ing the number square — the sum of these numbers giving
the magical number — Kim now proceeds “conversely”:

Starting from a magical number and its decomposition

into six border numbers, a magical number square with

just this (starting) number can be constructed. On this ba-
sis the new knowledge relation can be summarised in the
following way.

e The chain of argumentation as interactively developed
in this class can be characterised — in this way: In cer-
tain 3 X 3 number squares — that are constructed by the
addition of border numbers — magical numbers can be
calculated from three circled numbers, and these mag-
ical numbers are constant because the sum of the six
border numbers is equal to the magical number and be-
cause each border number appears exactly one time in
the addition tasks for the three circled numbers.

e The argumentation changes with Kim’s justification in
the following manner: A number is chosen (66), and
this number is decomposed into six border numbers,
that allow by addition the construction of a 3 x 3 mag-
ical square. Each border number appears in one circled
number once in the addition task. The chosen number
is, by construction, equal to the sum of border numbers,
and hence it is also equal to the sum of three circled
numbers: the magical number.

A first comparison of these two episodes shows that
from a communicative perspective the type of interaction
in both situations has a similar, “open” character. In the
first episode, the two students Timo and Nele do not use
the numbers in the number walls simply in a definite, di-
rect manner. They try to elaborate relations between differ-
ent numbers for justifying the invariance of the top num-
ber. The two numbers “90” and “110” compensate and
hence they argue that this represents the same constancy
as the two numbers “100” and “100”. In this way, an arith-
metical relation is established. The signifier “90 and 110
compensate” has to be interpreted by the other participants
of communication; this signifier has not yet a definite sig-
nified, but it has to be constructed in communication. In
this way, one can observe a “true”, open mathematical in-
teraction in this episode, in the way as it is described in
the theoretical approach of Luhmann (see part 3). In the
second episode Kim conveys different, open signifiers that
have to be understood by constructing new signifieds in
communication. One signifier to be interpreted is: “... you
only need to break the sixty-six to pieces, into six num-
bers. And then you have to, when it is snipped into pieces,
one would, one should then place them simply somewhere
there...” This signifier needs a new interpretation for the
way the magical number “66” is used now, i.e. intention-
ally as the generating number for six border numbers. This
example also demonstrates the “open” use of signifiers in
communication, as required in Luhmann’s theoretical de-
scription. In this first comparison one can identify similar
uses of signifiers in communication; the students do not
take the numbers directly for calculating arithmetical re-
sults, etc. But they intend to construct relations between
numbers that could lead to a justification and a possi-
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ble generalisation. In this way, a relation between border
numbers (in the second level) and the top number is con-
structed in the first episode; in the second episode, the
magical number is interpreted in a new relational way as
the partition of six border numbers.

A fundamental problem of the epistemological interac-
tion analysis is the adequate interpretation of mathemati-
cal statements in communication, in which with their own
words, in the frame of existing mathematical knowledge
and familiar descriptions, new knowledge has to be con-
structed and to be justified interactively by children. In
both episodes one can observe such mathematical state-
ments with the intended construction of new knowledge;
from a general, communicative perspective both commu-
nication processes are open, in a way that communicated
signifiers have to be interpreted. They do not have a given,
definite signified beforehand. And also the arguments de-
veloped in these two situations are not yet “complete”, and
they are presented in a situated context, not as “strictly
logical” justifications; further one can state that the use of
available, familiar, partially concrete means of description
in the actual frame of means of mathematical description
makes the analysis difficult: is there indeed an intended
construction of new knowledge or is some already known
knowledge simply repeated?

But from an epistemological perspective, there is an im-
portant difference in the interactive construction of new
knowledge in these two episodes. The relation constructed
by Kim “The magical square is the result of a chosen mag-
ical number” goes beyond the perception of patterns and
structures on the arithmetical surface on number squares
and takes into account underlying, deeper structural re-
lations. Kim’s argument cannot be plausibly interpreted
immediately from her perception of observable arithmeti-
cal regularities; it can only be reconstructed as a partial
argument in the frame of invisible, deeper mathematical
relations. The argument developed in the first episode re-
mains on the surface of observable arithmetical regulari-
ties. A relation is constructed from observing the differ-
ence between “90” and “110” as a balance to “100”, and
this regularity is taken directly as the basis for the justi-
fication of the invariance of the top number. In short the
argument developed here is: “Because the two numbers
90 and 110 balance to 100, and hence there is some sort
of equivalence compared with the two border numbers of
100 in the other number wall, therefore the top numbers
also do not differ, they remain the same”. But this argu-
ment remains on the surface, it does not take into account
the deeper, relational structure, i.e. the construction rules
for number walls.

The critical evaluation of the arguments given in the
first episode as well as the assessment of the arguments
presented in the course of the second episode require an
analysis from an epistemological perspective. This anal-
ysis focuses upon the possible functional relations in the
mathematical “object” being communicated here and their
reconstruction as “symbolic relational structures” in line
with the assumptions about the nature of mathematical
knowledge developed above. In the context of the inter-
pretations being interactively constituted, the observer has
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to develop a potential spectrum of knowledge relations
and networks, which support his / her capacity to recog-
nise and help to develop those arguments and justifications
produced and adequately to assess them and be able to re-
flect on them from an epistemological perspective.
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Appendix: Transcripts of two teaching episodes

1. Episode:
Relationships between central base numbers and the
goal number in a number wall of four levels

Fig. 20

[To describe the position of numbers on the number wall
the stones are numbered consecutively from bottom to top
and from left to right in the transcripts.]
The following number walls are displayed on the black-
board.
See Fig. 24!

174 T # Mh, I repeat the question again, Sascha, because it
is really difficult now. ... Well, when we change in the
middle, [points at the second and third stone “45”
and “35” and then at the sixth stone “80” of the
lower number wall with goal number “360 "] then here
[points at the second and third stone “35” and “45” of
the number wall in the middle with goal number “360”,
subsequently she points at the sixth stone “80”] we get
always the same, sure. Yes, you have found this cor-
rectly. But, when we change here [points at the third
and fourth stone “35” and “65” of the lower num-
ber wall with goal number “360”] this stone changes
[points at the seventh stone “100” of the lower num-
ber wall and at the seventh stone “110” of the middle
number wall with goal number “360”] Nevertheless
there is the same goal number. [8 sec pause]

174b S Because ch... That is always the same.

174c T Timo!

175 TiThat’s why, [goes to the blackboard] well, yes, ehm,
here, here is hundred, hundred [points at the fifth
and seventh stone “100” of the lower number wall
with goal number “360”] and here is hundred-ten and
ninety. [points at the seventh and then at the fifth stone
in the middle number wall with goal number “360]
That compensates again. There is ten more and there
is ten less. Then it’s equal again. ... [he points at the
seventh stone “110” and at the fifth stone “90” in the
middle number wall with goal number “360"]

176 T Who of you could explain this again? Then I could
write it down, Nele!

177 N Well this is always. [goes fo the blackboard] Here, the
tenths are differently distributed, [points at the seventh
stone “110” of the middle number wall with goal num-
ber “3607] then here ten less [points at the fifth stone
“90”’] and there ten more. [points at the seventh stone
“110”] And here it is then equal. [points alternately
at the seventh and the at the fifth stone “100” in the
middle number wall with goal number “360"]

178 T [points first at the fifth stone “100” of the lower number
wall and subsequently at the fifth stone “90” in the
middle number wall with goal number “360’] Ten less.
[writes “—10” into the fifth stone of the middle number
wall with goal number “360”] Can you see this?

179 S # The difference is equal. #
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180 T # A bit small, yes? And here accordingly then? [points
at the seventh stone “110” in the middle number wall
with goal number “3607] ...

181 S Ten more
182 S Ten more
183 T Yes. [writes “+107” into the seventh stone]

360

170 | 190

—10 +10
90 80 | 110

55 [ 35 | 45 | 65

Fig. 21

Then, another student remarks on similar differences of
ten in the two numbers of the third level of the walls.

2. Episode:
Relationships between border numbers and the magical
number in a 3 X 3 number square

+ 13 19| 4

10 f 23|19 | 14

12125121 |16

18 31|27 | 22

Fig. 22

At the end of this lesson the teacher asks for the justifi-
cations why the magical number of this number square is
always 66 to be repeated. First, Judith repeats her own jus-
tification in other words. Later, Kim presents a completely
new justification.

396 Ju Well. Yes, well, when you there calculate eighteen plus
twelve plus ten plus thirteen plus nine plus four then
it is always sixty-six. Yes, ehm, now when you add all
these many numbers. We have the thirty-one that, that
is the same as the eighteen and the thirteen. Well, ehm,
and, and from the plus numbers, ehm from the border
numbers that, yes, that, that now, every border number
comes now one time into play, when you cross out
something there, or so. This, this, yes ... and therefore
you may ... ehm, then, yes, then, circle in a row only
one number. Yes, because otherwise a number would
be included twice.

397 S Ahh!

407 T Mhm. Kim.

408 Ki ehm, mh, you only need to break the sixty-six to pieces,
into six numbers. And then you have to, when it is
snipped into pieces, one would, one should then place
them simply somewhere there still, and then calculate
the numbers. And, and, then, then, then one only has
to do this with the number square. And then you get
always sixty-six.

409 T Super, really super! Please show where you should
place the six numbers which you have snipped out.
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410 Ki [goes to the blackboard] Yes, simply there above, three
pieces and there, and then there a plus sign, [points at
the according places in the border of the square]. And
then one has somehow to calculate, there for instance
nine and ten makes nineteen. And then, and when one
would make this, one would always get sixty-six.

sign / symbol

object / reference context 4

eft side of the blackboard right side of the blackboard

[ o] [#] 400 [e] [«]

180 | 180 |17o|21o| |230|190| 230 | 210
||oo|ao|1oo| ‘aa so‘|2o| |120|no|ao |11o||2o|90|
|65|35|45|55H45|35|55|es| |55|65|46|35||45‘55|55|35|

] [=] ]

170 [ 1% [190 [1o0 | 210 [ 210 | 220 | 220
%0 [80 [110 100 | 90 [ 100 |100|11 [|oo| |100||2o||oo| -4
55 | 35 |45 | 65 65| 38 [55 | 45 |35| |45|5

| [=fes [ [=]
—J

this remains the same (4}, (5), (6)
here (7), (8) exchanging, then this
-~ stone changes (9), (10).

exchanging in the middle (1), (2), (3)

kNevertheIess the same goal stone! Y,

arithmetical
relationships in

number walls

concept
Fig. 23
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right side of the blackboard

[w] o [ 3

180 210 230 | 190 230 | 210

left side of the blackboard

|1oo|so‘1oo‘ |120|110|80‘

‘110|120|90|

‘65|35|45|

|55|65|45|35||45|65|55|35|

190 190 | 190
|90|80|110‘ |100‘90|1oo|

120
|55‘35|45|65||65|35|55‘45| ‘35|65|45|55H35|65|

55‘45|

Fig. 24
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