UDC 517.98

HOMOGENEOUS FUNCTIONS OF REGULAR LINEAR AND BILINEAR OPERATORS¹

To Yuri G. Reshetnjak on the occasion of his 80th birthday

A. G. Kusraev

Using envelope representations explicit formulae for computing $\hat{\varphi}(T_1, \ldots, T_N)$ for any finite sequence of regular linear or bilinear operators T_1, \ldots, T_N on vector lattices are derived.

Mathematics Subject Classification (2000): 46A40, 47A50, 47A60, 47A63, 47B65.

Key words: regular linear operator, regular bilinear operator, homogeneous functional calculus, envelope representation.

1. Introduction

This paper is a continuation of [5]. We apply the upper envelope representation method (or the quasilinearization method) in vector lattices developed in [4, 5] to the homogeneous functional calculus of linear and bilinear operators. Explicit formulae for computing $\hat{\varphi}(T_1, \ldots, T_N)$ for any finite sequence of regular linear or bilinear operators T_1, \ldots, T_N are derived.

For the theory of vector lattices and positive operators we refer to the books [1] and [3]. All vector lattices in this paper are real and Archimedean.

Consider conic sets C and K with $K \subset C$ and K closed. Let $\mathscr{H}(C; K)$ denotes the vector lattice of all positively homogeneous functions $\varphi : C \to \mathbb{R}$ with continuous restriction to K. The expression $\widehat{\varphi}(x_1, \ldots, x_N)$ can be correctly defined provided that the compatibility condition $[x_1, \ldots, x_N] \subset K$ is hold, see [5]. Denote by $\mathscr{H}_{\vee}(\mathbb{R}^N, K)$ and $\mathscr{H}_{\wedge}(\mathbb{R}^N, K)$ respectively the sets of all lower semicontinuous

Denote by $\mathscr{H}_{\vee}(\mathbb{R}^N, K)$ and $\mathscr{H}_{\wedge}(\mathbb{R}^N, K)$ respectively the sets of all lower semicontinuous sublinear functions $\varphi : \mathbb{R}^N \to \mathbb{R} \cup \{+\infty\}$ and upper semicontinuous superlinear functions $\psi : \mathbb{R}^N \to \mathbb{R} \cup \{-\infty\}$ which are finite and continuous on a fixed cone $K \subset \mathbb{R}^N$. Put $\mathscr{H}_{\vee}(\mathbb{R}^N) :=$ $\mathscr{H}_{\vee}(\mathbb{R}^N, \{0\})$ and $\mathscr{H}_{\wedge}(\mathbb{R}^N) := \mathscr{H}_{\wedge}(\mathbb{R}^N, \{0\}).$

Denote by $\mathscr{G}_{\vee}(\mathbb{R}^N, K)$ and $\mathscr{G}_{\wedge}(\mathbb{R}^N, K)$ respectively the sets of all lower semicontinuous gauges $\varphi : \mathbb{R}^N \to \mathbb{R}_+ \cup \{+\infty\}$ and upper semicontinuous co-gauges $\psi : \mathbb{R}^N \to \mathbb{R}_+ \cup \{-\infty\}$ which are finite and continuous on a fixed cone $K \subset \mathbb{R}^N$. Put $\mathscr{G}_{\vee}(\mathbb{R}^N) := \mathscr{G}_{\vee}(\mathbb{R}^N, \{0\})$ and $\mathscr{G}_{\wedge}(\mathbb{R}^N) := \mathscr{G}_{\wedge}(\mathbb{R}^N, \{0\})$. Observe that $\mathscr{G}_{\vee}(\mathbb{R}^N) \subset \mathscr{H}_{\vee}(\mathbb{R}^N)$ and $\mathscr{G}_{\wedge}(\mathbb{R}^N) \subset \mathscr{H}_{\wedge}(\mathbb{R}^N)$, see [4, 5].

Everywhere below E, F, and G denote vector lattices, while $L^r(E, F)$ and $BL^r(E, F; G)$ stand for the spaces of regular linear operators from E to F and regular bilinear operator from $E \times F$ to G, respectively.

^{© 2009} Kusraev A. G.

¹Supported by a grant from Russian Foundation for Basic Research, project № 09-01-00442.

2. Functions of Bilinear Operators

A partition of $x \in E_+$ is any finite sequence (x_1, \ldots, x_n) , $n \in \mathbb{N}$, of elements of E_+ whose sum equals x. Denote by Prt(x) and DPrt(x) the sets of all partitions of x and all partitions with pairwise disjoint terms, respectively.

2.1. Lemma. Let E, F, and G be vector lattices, $b_1, \ldots, b_N \in BL^r(E, F; G)$, and $\mathfrak{b} := (b_1, \ldots, b_N)$. Let $\varphi \in \mathscr{H}_{\vee}(\mathbb{R}^N)$, $\psi \in \mathscr{H}_{\wedge}(\mathbb{R}^N)$, $\widehat{\varphi}(b_1(x_0, y_0), \ldots, b_N(x_0, y_0))$ and $\widehat{\psi}(b_1(x_0, y_0), \ldots, b_N(x_0, y_0))$ are well defined in G for all $0 \leq x_0 \leq x$ and $0 \leq y_0 \leq y$. Denote $\mathfrak{x} := (x_1, \ldots, x_n) \in E^n$ and $\mathfrak{y} := (y_1, \ldots, y_m) \in F^m$, $m, n \in \mathbb{N}$. Then the sets

$$\varphi(\mathfrak{b}; x, y) \coloneqq \bigg\{ \sum_{i=1}^{n} \sum_{j=1}^{m} \widehat{\varphi}(b_1(x_i, y_j), \dots, b_N(x_i, y_j)) \colon n, m \in \mathbb{N}, \mathfrak{x} \in \operatorname{Prt}(x), \ \mathfrak{y} \in \operatorname{Prt}(y) \bigg\}, \\ \psi(\mathfrak{b}; x, y) \coloneqq \bigg\{ \sum_{i=1}^{n} \sum_{j=1}^{m} \widehat{\psi}(b_1(x_i, y_j), \dots, b_N(x_i, y_j)) \colon n, m \in \mathbb{N}, \mathfrak{x} \in \operatorname{Prt}(x), \ \mathfrak{y} \in \operatorname{Prt}(y) \bigg\},$$

are upward directed and downward directed, respectively.

 \triangleleft Assume that (x_1, \ldots, x_n) and $(x'_1, \ldots, x'_{n'})$ are partitions of x while (y_1, \ldots, y_m) and $(y'_1, \ldots, y'_{m'})$ are partitions of y. By The Riesz Decomposition Property of vector lattices there exist finite double sequences $(u_{i,k})_{i \leq n, k \leq n'}$ in E_+ and $(v_{j,l})_{j \leq m, l \leq m'}$ in F_+ such that

$$\sum_{k=1}^{n'} u_{i,k} = x_i, \quad \sum_{i=1}^n u_{i,k} = x'_k \quad (i := 1, \dots, n, \ k := 1, \dots, n');$$
$$\sum_{l=1}^{m'} v_{j,l} = y_j, \quad \sum_{j=1}^m v_{j,l} = y'_l \quad (j := 1, \dots, m, \ l := 1, \dots, m').$$

In particular, $(u_{i,k})_{i \leq n, k \leq n'}$ and $(v_{j,l})_{j \leq m, l \leq m'}$ are partition of x and y, respectively. Taking subadditivity of φ into consideration we obtain

$$\sum_{i,j=1}^{n,m} \widehat{\varphi}(b_1(x_i, y_j), \dots, b_N(x_i, y_j)) = \sum_{i,j=1}^{n,m} \widehat{\varphi}\left(\sum_{k,l=1}^{n',m'} b_1(u_{i,k}, v_{j,l}), \dots, \sum_{k,l=1}^{n',m'} b_N(u_{i,k}, v_{j,l})\right)$$
$$= \sum_{i,j=1}^{n,m} \widehat{\varphi}\left(\sum_{k,l=1}^{n',m'} \left(b_1(u_{i,k}, v_{j,l}), \dots, b_N(u_{i,k}, v_{j,l})\right)\right) \leqslant \sum_{i,j=1}^{n,m} \sum_{k,l=1}^{n',m'} \widehat{\varphi}(b_1(u_{i,k}, v_{j,l}), \dots, b_N(u_{i,k}, v_{j,l})).$$

In a similar way we get

$$\sum_{k,l=1}^{n',m'} \widehat{\varphi} \left(b_1(x'_k, y'_l), \dots, b_N(x'_k, y'_l) \right) \leqslant \sum_{i,j=1}^{n',m'} \sum_{k,l=1}^{n,m} \widehat{\varphi} (b_1(u_{i,k}, v_{j,l}), \dots, b_N(u_{i,k}, v_{j,l})),$$

so that the first set is upward directed. Similarly, the second set is downward directed. \triangleright

2.2. Lemma. Let Let E, F, and G be vector lattices with G Dedekind complete and \mathscr{B} be an order bounded set of regular bilinear operators from $E \times F$ to G. Then for every $x \in E_+$ and $y \in F_+$ we have:

$$(\sup \mathscr{B})(x,y) = \sup \left\{ \sum_{i=1}^{n} \sum_{j=1}^{m} b_{k(i,j)}(x_i, y_j) \right\},$$
$$(\inf \mathscr{B})(x,y) = \inf \left\{ \sum_{i=1}^{n} \sum_{j=1}^{m} b_{k(i,j)}(x_i, y_j) \right\},$$

where supremum and infimum are taken over all naturals $n, m, l \in \mathbb{N}$, functions $k : \{1, \ldots, n\} \times \{1, \ldots, m\} \rightarrow \{1, \ldots, l\}$, partitions $(x_1, \ldots, x_n) \in \operatorname{Prt}(x)$ and $(y_1, \ldots, y_m) \in \operatorname{Prt}(y)$, and arbitrary finite collections $b_1 \ldots, b_l \in \mathscr{B}$.

 \triangleleft See [6, Proposition 2.6]. \triangleright

2.3. Theorem. Let E, F, and G be vector lattices with G Dedekind complete, $b_1, \ldots, b_N \in BL^r(E, F; G)$, and $\mathfrak{b} := (b_1, \ldots, b_N)$. Assume that $\varphi \in \mathscr{H}_{\vee}(\mathbb{R}^N)$, $\psi \in \mathscr{H}_{\wedge}(\mathbb{R}^N)$, $\widehat{\varphi}(b_1(x_0, y_0), \ldots, b_N(x_0, y_0))$ and $\widehat{\psi}(b_1(x_0, y_0), \ldots, b_N(x_0, y_0))$ are well defined in G for all $0 \leq x_0 \leq x$ and $0 \leq y_0 \leq y$, $\varphi(\mathfrak{b}; x, y)$ is order bonded above, and $\psi(\mathfrak{b}; x, y)$ is order bounded below for all $x \in E_+$ and $y \in F_+$. Then $\widehat{\varphi}(b_1, \ldots, b_N)$ and $\widehat{\psi}(b_1, \ldots, b_N)$ are well defined in $BL^r(E, F; G)$ and for every $x \in E_+$ and $y \in F_+$ the representations

$$\widehat{\varphi}(b_1, \dots, b_N)(x, y) = \sup \varphi(\mathfrak{b}; x, y),$$
$$\widehat{\psi}(b_1, \dots, b_N)(x, y) = \inf \psi(\mathfrak{b}; x, y)$$

hold with supremum over upward directed set and infimum over downward directed set. If E and F have the strong Freudenthal property (or principal projection property) then Prt(x) and Prt(y) may be replaced by DPrt(x) and DPrt(y), respectively.

 $\exists \text{ Denote } b_{\lambda} := \lambda_{1}b_{1} + \dots + \lambda_{N}b_{N} \text{ for } \lambda := (\lambda_{1}, \dots, \lambda_{N}) \in \mathbb{R}^{N} \text{ and observe that if the set } \{b_{\lambda} : \lambda \in \underline{\partial}\varphi\} \text{ is order bounded in } BL^{r}(E, F; G), \text{ then by } [5, \text{ Theorem 4.4}] \ \widehat{\varphi}(b_{1}, \dots, b_{N}) \text{ exists in } BL^{r}(E, F; G) \text{ and the upper envelope representation } \widehat{\varphi}(b_{1}, \dots, b_{N}) = \sup\{b_{\lambda} : \lambda \in \underline{\partial}\varphi\} \text{ holds. Take arbitrary } \lambda^{r} := (\lambda_{1}^{r}, \dots, \lambda_{N}^{r}) \in \underline{\partial}\varphi \ (r := 1, \dots, l), \ k : \{1, \dots, n\} \times \{1, \dots, m\} \rightarrow \{1, \dots, l\}, \ \mathfrak{x} := (x_{1}, \dots, x_{n}) \in \operatorname{Prt}(x), \text{ and } \mathfrak{y} := (y_{1}, \dots, y_{m}) \in \operatorname{Prt}(y). \text{ Making use of Lemma 2.2 and } [5, \text{ Theorem 4.4}] \text{ we deduce:}$

$$\sum_{i,j=1}^{n,m} b_{\lambda^{k(i,j)}}(x_i, y_j) = \sum_{i,j=1}^{n,m} \sum_{s=1}^{N} \lambda_s^{k(i,j)} b_s(x_i, y_j) \leqslant \sum_{i,j=1}^{n,m} \widehat{\varphi}(b_1(x_i, y_j), \dots, b_N(x_i, y_j)) \leqslant a,$$

where a is an upper bound of $\varphi(\mathfrak{b}; x, y)$. Passing to supremum over all $(\lambda^1, \ldots, \lambda^l)$, k, \mathfrak{x} , and \mathfrak{y} and taking [5, Theorem 4.4] into account we get that $\widehat{\varphi}(b_1, \ldots, b_N)$ is well defined and $\widehat{\varphi}(b_1, \ldots, b_N)(x, y) \leq \varphi(\mathfrak{b}; x, y)$. Surely, in above reasoning we could take $(x_1, \ldots, x_n) \in$ DPrt(x) provided that E has the principal projection property.

Conversely, let f(x, y) stands for the right-hand side of the first equality. Observe that if $(\lambda_1, \ldots, \lambda_n) \in \underline{\partial}\varphi$ and $u \in E_+, v \in F_+$, then by [5, Theorem 4.4] we have

$$\sum_{k=1}^{N} \lambda_k b_k(u, v) = \Big(\sum_{k=1}^{N} \lambda_k b_k\Big)(u, v) \leqslant \widehat{\varphi}(b_1, \dots, b_N)(u, v)$$

and again $\widehat{\varphi}(b_1(u, v), \dots, b_N(u, v)) \leq \widehat{\varphi}(b_1, \dots, b_N)(u, v)$ by [5, Theorem 4.4]. Now, given (x_1, \dots, x_n) in $\operatorname{Prt}(x)$ or $\operatorname{DPrt}(x)$ and (y_1, \dots, y_n) in $\operatorname{Prt}(y)$ or $\operatorname{DPrt}(y)$, we can estimate

$$\sum_{i,j=1}^{n,m} \widehat{\varphi}(b_1(x_i, y_j), \dots, b_N(x_i, y_j)) \leqslant \sum_{i,j=1}^{n,m} \widehat{\varphi}(b_1, \dots, b_N)(x_i, y_j) \leqslant \widehat{\varphi}(b_1, \dots, b_N)(x, y)$$

and thus $f(x, y) \leq \widehat{\varphi}(b_1, \ldots, b_N)(x, y)$. Thus the first equality is hold true. By Lemma 2.1 the supremum on the right-hand side of the required formula is taken over upward directed set.

The second representation is proved in a similar way. \triangleright

2.4. Corollary. Let $E, F, G, \varphi, \psi, b_1, \ldots, b_N$ be the same as in 2.1, $\overline{b} := \widehat{\varphi}(b_1, \ldots, b_N)$ and $\underline{b} := \widehat{\psi}(b_1, \ldots, b_N)$. Assume that, in addition, E = F has the strong Freudenthal property and b_1, \ldots, b_N are orthosymmetric. Then for every $x \in E$ the representations

$$\overline{b}(x,x) = \sup \left\{ \sum_{i=1}^{n} \varphi(b_1(x_i, |x|), \dots, b_N(x_i, |x|)) : (x_1, \dots, x_n) \in \mathrm{DPrt}(|x|) \right\},\$$

$$\underline{b}(x,x) = \inf \left\{ \sum_{i=1}^{n} \psi(b_1(x_i, |x|), \dots, b_N(x_i, |x|)) : (x_1, \dots, x_n) \in \mathrm{DPrt}(|x|) \right\},\$$

hold with supremum and infimum over upward and downward directed sets, respectively.

 \triangleleft It is sufficient to check the first formula. We can assume $x \in E_+$. Denote by g(x) the right-hand side of the desired equality. From Theorem 2.3 we have $g(x) \leq \widehat{\varphi}(b_1, \ldots, b_N)(x, x)$. To prove the reverse inequality take two disjoint partitions of x, say $\mathfrak{x}' := (x'_1, \ldots, x'_l)$ and $\mathfrak{x}'' := (x''_1, \ldots, x''_n)$, and let $(x_1, \ldots, x_n) \in \mathrm{DPrt}(x)$ be their common refinement. Since b_1, \ldots, b_N are orthosymmetric we deduce

$$\sum_{r,s=1}^{l,m} \widehat{\varphi}(b_1(x'_r, x''_s), \dots, b_N(x'_r, x''_s))$$

= $\sum_{i=1}^n \widehat{\varphi}(b_1(x_i, x_i), \dots, b_N(x_i, x_i)) = \sum_{i=1}^n \widehat{\varphi}(b_1(x_i, x), \dots, b_N(x_i, x)).$

Passing to supremum over all \mathfrak{x}' and \mathfrak{x}'' we get the desired inequality. \triangleright

3. Functions of Linear Operators

The above machinery is applicable to the calculus of order bounded operators.

3.1. Theorem. Let E and F be vector lattices with F Dedekind complete, $T_1, \ldots, T_N \in L^r(E, F)$, and $\mathfrak{T} := (T_1, \ldots, T_N)$. Let $\varphi \in \mathscr{H}_{\vee}(\mathbb{R}^N)$, $\psi \in \mathscr{H}_{\wedge}(\mathbb{R}^N)$, $\widehat{\varphi}(T_1x_0, \ldots, T_Nx_0)$ and $\widehat{\psi}(T_1x_0, \ldots, T_Nx_0)$ are well defined in F for all $0 \leq x_0 \leq x$. If for every $x \in E_+$ the sets

$$\varphi(\mathfrak{T};x) = \left\{ \sum_{k=1}^{n} \widehat{\varphi}(T_1 x_k, \dots, T_N x_k) : (x_1, \dots, x_n) \in \operatorname{Prt}(x) \right\},\$$
$$\psi(\mathfrak{T};x) = \left\{ \sum_{k=1}^{n} \widehat{\psi}(T_1 x_k, \dots, T_N x_k) : (x_1, \dots, x_n) \in \operatorname{Prt}(x) \right\}$$

are order bounded from above and from below respectively, then $\widehat{\varphi}(T_1, \ldots, T_N)$ and $\widehat{\psi}(T_1, \ldots, T_N)$ exist in $L^r(E, F)$, and the representations

$$\widehat{\varphi}(T_1, \dots, T_N) x = \sup \varphi(\mathfrak{T}; x),$$
$$\widehat{\psi}(T_1, \dots, T_N) x = \inf \psi(\mathfrak{T}; y)$$

hold with supremum over upward directed set and infimum over downward directed set. If E has the principal projection property then Prt(x) may be replaced by DPrt(x).

 \triangleleft Follows immediately from 2.3. \triangleright

3.2. REMARK. (1) Assume that $E, F, T_1, \ldots, T_N, \varphi$, and ψ are the same as in [4, Theorem

5.2]. Then $\widehat{\varphi}(T_1, \ldots, T_N) x \ge \widehat{\varphi}(T_1 x, \ldots, T_N x)$ and $\widehat{\psi}(T_1, \ldots, T_N) x \le \widehat{\psi}(T_1 x, \ldots, T_N x)$ for all $x \in E_+$. In particular, if $\mathbb{R}^N_+ \subset \operatorname{dom}(\varphi) \cap \operatorname{dom}(\psi)$ and $\widehat{\varphi}(T_1 x, \ldots, T_N x) \ge \widehat{\psi}(T_1 x, \ldots, T_N x)$ for all $x \in E_+$, then $\widehat{\varphi}(T_1, \ldots, T_N) \ge \widehat{\psi}(T_1, \ldots, T_N)$.

(2) Assume that $\varphi \in \mathscr{H}(C; [\mathfrak{x}])$ and $\varphi(0, t_2, \ldots, t_N) = 0$ for all $(t_1, \ldots, t_N) \in \operatorname{dom}(\varphi)$. Then evidently $\widehat{\varphi}(x_1, \ldots, x_N) \in \{x_1\}^{\perp \perp}$ provided that $[\mathfrak{x}] \subset \operatorname{dom}(\varphi)$. This simple observation together with [4, Theorem 5.2] enables one to attack the nonlinear majorization problem for wider variety of majorants $\widehat{\varphi}(T_1, \ldots, T_N)$, cp. [2].

3.3. Let *E* and *F* be vector lattices with *E* relatively uniformly complete and *F* Dedekind complete. Then for $T_1, \ldots, T_N \in L^r_+(E, F)$, $x_1, \ldots, x_N \in E_+$, and $\alpha_1, \ldots, \alpha_N \in \mathbb{R}_+$ with $\alpha_1 + \cdots + \alpha_N = 1$ we have

$$(T_1^{\alpha_1}\dots T_N^{\alpha_N})(x_1^{\alpha_1}\dots x_N^{\alpha_N}) \leqslant (T_1x_1)^{\alpha_1}\dots (T_Nx_N)^{\alpha_N}.$$

The reverse inequality holds provided that $\alpha_1 + \cdots + \alpha_N = 1, (-1)^k (1 - \alpha_1 - \cdots - \alpha_k) \alpha_1 \cdots \alpha_k \ge 0$ $0 \ (k := 1, \ldots, N - 1), \text{ and } x_i \gg 0, \ f(x_i) \gg 0 \text{ for all } i \text{ with } \alpha_i < 0.$

 \triangleleft Apply [4, Corollary 6.7] with $K = \mathbb{R}^N_+$, C = 1, $\varphi_0(t) = \varphi_1(t) = \varphi_2(t) = t_1^{\alpha_1} \dots t_N^{\alpha_N}$.

3.4. Theorem. Let E and F be vector lattices with F Dedekind complete and $T_1, \ldots, T_N \in L^r_+(E, F)$. Suppose that $\varphi \in \mathscr{G}_{\vee}(\mathbb{R}^N, \mathbb{R}^N_+)$ and $\psi \in \mathscr{G}_{\wedge}(\mathbb{R}^N, \mathbb{R}^N_+)$ are increasing and $[T_1, \ldots, T_N] \subset \operatorname{dom}(\varphi) \cap \operatorname{dom}(\psi)$. Then for every $x \in E_+$ the representations hold

$$\widehat{\varphi}(T_1,\ldots,T_N)x = \sup\left\{\sum_{k=1}^N T_k x_k : x_1,\ldots,x_N \in E_+, \ \widehat{\varphi^\circ}(x_1,\ldots,x_N) \leqslant x\right\},\\ \widehat{\psi}(T_1,\ldots,T_N)x = \inf\left\{\sum_{k=1}^N T_k x_k : x_1,\ldots,x_N \in E_+, \ \widehat{\psi_\circ}(x_1,\ldots,x_N) \geqslant x\right\},$$

with supremum over upward directed set and infimum over downward directed set.

 \triangleleft Suppose that $\widehat{\varphi}(T_1, \ldots, T_N)$ exists and $x \in E_+$. If $x_1, \ldots, x_N \in E_+$ and $\widehat{\varphi}^{\circ}(x_1, \ldots, x_N) \leq x$, then making use of the Bipolar Theorem, positivity of $\widehat{\varphi}(T_1, \ldots, T_N)$, and [4, Corollary 6.8] we deduce

$$\sum_{k=1}^{N} T_k x_k \leqslant \widehat{\varphi}(T_1, \dots, T_N)(\widehat{\varphi^{\circ}}(x_1, \dots, x_N)) \leqslant \widehat{\varphi}(T_1, \dots, T_N) x.$$

To prove the reverse inequality take $(x_1, \ldots, x_n) \in Prt(x), \ \lambda^k = (\lambda_1^k, \ldots, \lambda_N^k) \in \underline{\partial}\varphi = \{\varphi^{\circ} \leq 1\} \ (k := 1, \ldots, n), \text{ and put } u_i := \sum_{k=1}^n \lambda_i^k x_k. \text{ If } \alpha := (\alpha_1, \ldots, \alpha_N) \in \underline{\partial}\varphi^{\circ} = \{\varphi \leq 1\}, \text{ then } \langle \alpha, \lambda^k \rangle \leq \varphi(\alpha)\varphi^{\circ}(\lambda^k) \leq 1 \text{ and thus}$

$$\sum_{i=1}^{N} \alpha_i u_i = \sum_{i=1}^{N} \alpha_i \sum_{k=1}^{n} \lambda_i^k x_k = \sum_{k=1}^{n} \langle \alpha, \lambda^k \rangle x_k \leqslant x.$$

It follows from [5, Theorem 5.4] that $\widehat{\varphi^{\circ}}(u_1, \ldots, u_N) \leqslant x$.

Denote $S(\lambda) := \lambda_1 T_1 + \cdots + \lambda_N T_N$ with $\lambda := (\lambda_1, \ldots, \lambda_N)$. Let f(x) is the right-hand side of the first equality. Then

$$\sum_{k=1}^{n} S(\lambda^k)(x_k) = \sum_{i=1}^{N} T_i u_i \leqslant f(x).$$

It remains to observe that $\varphi(T_1, \ldots, T_N) = \sup\{S(\lambda) : \lambda \in \underline{\partial}\varphi\}$ by [5, Theorem 4.4]. \triangleright

3.5. Proposition. Let E, F, and G be vector lattices with F Dedekind complete, $R: E \to G$ an order interval preserving operator, $T: G \to F$ an order continuous lattice homomorphism, and $\varphi \in \mathscr{H}(C, K)$. Assume that $S_1, \ldots, S_N \in L^r(E, F)$ and $[S_1, \ldots, S_N] \subset K$. Then $[S_1 \circ R, \ldots, S_N \circ R] \subset K$ and

$$\widehat{\varphi}(S_1,\ldots,S_N)\circ R=\widehat{\varphi}(S_1\circ R,\ldots,S_N\circ R).$$

If, in addition, G is Dedekind complete, then $[T \circ S_1, \ldots, T \circ S_N] \subset K$ and

 $T \circ \widehat{\varphi}(S_1, \ldots, S_N) = \widehat{\varphi}(T \circ S_1, \ldots, T \circ S_N).$

 \triangleleft Under the indicated hypotheses the operators $S \mapsto S \circ R$ from $L^r(G, F)$ to $L^r(E, F)$ and $S \mapsto T \circ S$ from $L^r(E, G)$ to $L^r(E, F)$ are lattice homomorphisms, see [1, Theorem 7.4 and 7.5]. Therefore, it is sufficient to apply [5, Proposition 2.6]. \triangleright

3.6. Proposition. Let E and F be vector lattices with F Dedekind complete. Assume that $\varphi \in \mathscr{H}(C, K), S_1, \ldots, S_N \in L^r(E, F)$, and $[S_1, \ldots, S_N] \subset K$. If S^* denotes the restriction of the order dual S' to F_n^{\sim} , the order continuous dual of F, then $[S_1^*, \ldots, S_N^*] \subset K$ and

$$\widehat{\varphi}(S_1,\ldots,S_N)^* = \widehat{\varphi}(S_1^*,\ldots,S_N^*).$$

 \triangleleft By Krengel–Synnatschke Theorem [1, Theorem 5.11] the map $S \mapsto S^*$ is a lattice homomorphism from $L^r(E, F)$ into $L^r(F_n^{\sim}, E^{\sim})$, see [1, Theorem 7.6]. Thus, we need only to apply [5, Proposition 2.6]. \triangleright

3.7. Proposition. The second formula in Theorem 3.4 and Proposition 3.6 were obtained by A. V. Bukhvalov [2] under some additional restrictions.

References

- 1. Aliprantis C. D., Burkinshaw O. Positive Operators.-N.Y.: Acad. Press, 1985.-367 p.
- Bukhvalov A. V. Nonlinear majorization of linear operators // Dokl. Acad Nauk SSSR.—1988.—Vol. 298, № 1.—P. 14–17.
- 3. Kusraev A. G. Dominated Operators.—Dordrecht: Kluwer, 2000.—446 p.
- Kusraev A. G. Homogeneous Functional Calculus on Vector Lattices.—Vladikavkaz, 2008.—34 p.— (Preprint / IAMI VSC RAS; № 1).
- 5. Kusraev A. G. Functional calculus and Minkowski duality on vector lattices // Vladikavkaz Math. J.—2009.—Vol. 11, № 2.—P. 31–42.
- Kusraev A. G., Tabuev S. N. On Disjointness Preserving Bilinear Operators // Vladikavkaz Math. J.—2004.—Vol. 6, № 1.—P. 58–70.

Received August 4, 2009.

KUSRAEV ANATOLY GEORGIEVICH South Mathematical Institute Vladikavkaz Science Center of the RAS, *Director* 22 Markus Street, Vladikavkaz, 362027, Russia E-mail: kusraev@smath.ru