UDC 517.98

HOMOGENEOUS FUNCTIONS
 OF REGULAR LINEAR AND BILINEAR OPERATORS ${ }^{1}$

To Yuri G. Reshetnjak on the occasion of his 80th birthday

A. G. Kusraev

Using envelope representations explicit formulae for computing $\widehat{\varphi}\left(T_{1}, \ldots, T_{N}\right)$ for any finite sequence of
regular linear or bilinear operators T_{1}, \ldots, T_{N} on vector lattices are derived.

Mathematics Subject Classification (2000): 46A40, 47A50, 47A60, 47A63, 47B65.
Key words: regular linear operator, regular bilinear operator, homogeneous functional calculus, envelope representation.

1. Introduction

This paper is a continuation of [5]. We apply the upper envelope representation method (or the quasilinearization method) in vector lattices developed in [4, 5] to the homogeneous functional calculus of linear and bilinear operators. Explicit formulae for computing $\widehat{\varphi}\left(T_{1}, \ldots, T_{N}\right)$ for any finite sequence of regular linear or bilinear operators T_{1}, \ldots, T_{N} are derived.

For the theory of vector lattices and positive operators we refer to the books [1] and [3]. All vector lattices in this paper are real and Archimedean.

Consider conic sets C and K with $K \subset C$ and K closed. Let $\mathscr{H}(C ; K)$ denotes the vector lattice of all positively homogeneous functions $\varphi: C \rightarrow \mathbb{R}$ with continuous restriction to K. The expression $\widehat{\varphi}\left(x_{1}, \ldots, x_{N}\right)$ can be correctly defined provided that the compatibility condition $\left[x_{1}, \ldots, x_{N}\right] \subset K$ is hold, see [5].

Denote by $\mathscr{H}_{\checkmark}\left(\mathbb{R}^{N}, K\right)$ and $\mathscr{H}_{\wedge}\left(\mathbb{R}^{N}, K\right)$ respectively the sets of all lower semicontinuous sublinear functions $\varphi: \mathbb{R}^{N} \rightarrow \mathbb{R} \cup\{+\infty\}$ and upper semicontinuous superlinear functions $\psi: \mathbb{R}^{N} \rightarrow \mathbb{R} \cup\{-\infty\}$ which are finite and continuous on a fixed cone $K \subset \mathbb{R}^{N}$. Put $\mathscr{H}_{\mathrm{v}}\left(\mathbb{R}^{N}\right):=$ $\mathscr{H}_{\vee}\left(\mathbb{R}^{N},\{0\}\right)$ and $\mathscr{H}_{\wedge}\left(\mathbb{R}^{N}\right):=\mathscr{H}_{\wedge}\left(\mathbb{R}^{N},\{0\}\right)$.

Denote by $\mathscr{G}_{V}\left(\mathbb{R}^{N}, K\right)$ and $\mathscr{G}_{\wedge}\left(\mathbb{R}^{N}, K\right)$ respectively the sets of all lower semicontinuous gauges $\varphi: \mathbb{R}^{N} \rightarrow \mathbb{R}_{+} \cup\{+\infty\}$ and upper semicontinuous co-gauges $\psi: \mathbb{R}^{N} \rightarrow \mathbb{R}_{+} \cup\{-\infty\}$ which are finite and continuous on a fixed cone $K \subset \mathbb{R}^{N}$. Put $\mathscr{G}_{\vee}\left(\mathbb{R}^{N}\right):=\mathscr{G}_{\vee}\left(\mathbb{R}^{N},\{0\}\right)$ and $\mathscr{G}_{\wedge}\left(\mathbb{R}^{N}\right):=\mathscr{G}_{\wedge}\left(\mathbb{R}^{N},\{0\}\right)$. Observe that $\mathscr{G}_{\vee}\left(\mathbb{R}^{N}\right) \subset \mathscr{H}_{\vee}\left(\mathbb{R}^{N}\right)$ and $\mathscr{G}_{\wedge}\left(\mathbb{R}^{N}\right) \subset \mathscr{H}_{\wedge}\left(\mathbb{R}^{N}\right)$, see $[4,5]$.

Everywhere below E, F, and G denote vector lattices, while $L^{r}(E, F)$ and $B L^{r}(E, F ; G)$ stand for the spaces of regular linear operators from E to F and regular bilinear operator from $E \times F$ to G, respectively.

[^0]
2. Functions of Bilinear Operators

A partition of $x \in E_{+}$is any finite sequence $\left(x_{1}, \ldots, x_{n}\right), n \in \mathbb{N}$, of elements of E_{+}whose sum equals x. Denote by $\operatorname{Prt}(x)$ and $\operatorname{DPrt}(x)$ the sets of all partitions of x and all partitions with pairwise disjoint terms, respectively.
2.1. Lemma. Let E, F, and G be vector lattices, $b_{1}, \ldots, b_{N} \in B L^{r}(E, F ; G)$, and $\mathfrak{b}:=\left(b_{1}, \ldots, b_{N}\right)$. Let $\varphi \in \mathscr{H}_{\vee}\left(\mathbb{R}^{N}\right), \psi \in \mathscr{H}_{\wedge}\left(\mathbb{R}^{N}\right), \widehat{\varphi}\left(b_{1}\left(x_{0}, y_{0}\right), \ldots, b_{N}\left(x_{0}, y_{0}\right)\right)$ and $\widehat{\psi}\left(b_{1}\left(x_{0}, y_{0}\right), \ldots, b_{N}\left(x_{0}, y_{0}\right)\right)$ are well defined in G for all $0 \leqslant x_{0} \leqslant x$ and $0 \leqslant y_{0} \leqslant y$. Denote $\mathfrak{x}:=\left(x_{1}, \ldots, x_{n}\right) \in E^{n}$ and $\mathfrak{y}:=\left(y_{1}, \ldots, y_{m}\right) \in F^{m}, m, n \in \mathbb{N}$. Then the sets

$$
\begin{aligned}
& \varphi(\mathfrak{b} ; x, y):=\left\{\sum_{i=1}^{n} \sum_{j=1}^{m} \widehat{\varphi}\left(b_{1}\left(x_{i}, y_{j}\right), \ldots, b_{N}\left(x_{i}, y_{j}\right)\right): n, m \in \mathbb{N}, \mathfrak{x} \in \operatorname{Prt}(x), \mathfrak{y} \in \operatorname{Prt}(y)\right\}, \\
& \psi(\mathfrak{b} ; x, y):=\left\{\sum_{i=1}^{n} \sum_{j=1}^{m} \widehat{\psi}\left(b_{1}\left(x_{i}, y_{j}\right), \ldots, b_{N}\left(x_{i}, y_{j}\right)\right): n, m \in \mathbb{N}, \mathfrak{x} \in \operatorname{Prt}(x), \mathfrak{y} \in \operatorname{Prt}(y)\right\},
\end{aligned}
$$

are upward directed and downward directed, respectively.
\triangleleft Assume that $\left(x_{1}, \ldots, x_{n}\right)$ and $\left(x_{1}^{\prime}, \ldots, x_{n^{\prime}}^{\prime}\right)$ are partitions of x while $\left(y_{1}, \ldots, y_{m}\right)$ and $\left(y_{1}^{\prime}, \ldots, y_{m^{\prime}}^{\prime}\right)$ are partitions of y. By The Riesz Decomposition Property of vector lattices there exist finite double sequences $\left(u_{i, k}\right)_{i \leqslant n, k \leqslant n^{\prime}}$ in E_{+}and $\left(v_{j, l}\right)_{j \leqslant m, l \leqslant m^{\prime}}$ in F_{+}such that

$$
\begin{array}{ll}
\sum_{k=1}^{n^{\prime}} u_{i, k}=x_{i}, & \sum_{i=1}^{n} u_{i, k}=x_{k}^{\prime} \\
\sum_{l=1}^{m^{\prime}} v_{j, l}=y_{j}, \quad\left(i:=1, \ldots, n, k:=1, \ldots, n^{\prime}\right) \\
\sum_{j=1}^{m} v_{j, l}=y_{l}^{\prime} & \left(j:=1, \ldots, m, l:=1, \ldots, m^{\prime}\right)
\end{array}
$$

In particular, $\left(u_{i, k}\right)_{i \leqslant n, k \leqslant n^{\prime}}$ and $\left(v_{j, l}\right)_{j \leqslant m, l \leqslant m^{\prime}}$ are partition of x and y, respectively. Taking subadditivity of φ into consideration we obtain

$$
\begin{aligned}
& \sum_{i, j=1}^{n, m} \widehat{\varphi}\left(b_{1}\left(x_{i}, y_{j}\right), \ldots, b_{N}\left(x_{i}, y_{j}\right)\right)=\sum_{i, j=1}^{n, m} \widehat{\varphi}\left(\sum_{k, l=1}^{n^{\prime}, m^{\prime}} b_{1}\left(u_{i, k}, v_{j, l}\right), \ldots, \sum_{k, l=1}^{n^{\prime}, m^{\prime}} b_{N}\left(u_{i, k}, v_{j, l}\right)\right) \\
= & \sum_{i, j=1}^{n, m} \widehat{\varphi}\left(\sum_{k, l=1}^{n^{\prime}, m^{\prime}}\left(b_{1}\left(u_{i, k}, v_{j, l}\right), \ldots, b_{N}\left(u_{i, k}, v_{j, l}\right)\right)\right) \leqslant \sum_{i, j=1}^{n, m} \sum_{k, l=1}^{n^{\prime}, m^{\prime}} \widehat{\varphi}\left(b_{1}\left(u_{i, k}, v_{j, l}\right), \ldots, b_{N}\left(u_{i, k}, v_{j, l}\right)\right) .
\end{aligned}
$$

In a similar way we get

$$
\sum_{k, l=1}^{n^{\prime}, m^{\prime}} \widehat{\varphi}\left(b_{1}\left(x_{k}^{\prime}, y_{l}^{\prime}\right), \ldots, b_{N}\left(x_{k}^{\prime}, y_{l}^{\prime}\right)\right) \leqslant \sum_{i, j=1}^{n^{\prime}, m^{\prime}} \sum_{k, l=1}^{n, m} \widehat{\varphi}\left(b_{1}\left(u_{i, k}, v_{j, l}\right), \ldots, b_{N}\left(u_{i, k}, v_{j, l}\right)\right)
$$

so that the first set is upward directed. Similarly, the second set is downward directed.
2.2. Lemma. Let Let E, F, and G be vector lattices with G Dedekind complete and \mathscr{B} be an order bounded set of regular bilinear operators from $E \times F$ to G. Then for every $x \in E_{+}$ and $y \in F_{+}$we have:

$$
\begin{aligned}
& (\sup \mathscr{B})(x, y)=\sup \left\{\sum_{i=1}^{n} \sum_{j=1}^{m} b_{k(i, j)}\left(x_{i}, y_{j}\right)\right\} \\
& (\inf \mathscr{B})(x, y)=\inf \left\{\sum_{i=1}^{n} \sum_{j=1}^{m} b_{k(i, j)}\left(x_{i}, y_{j}\right)\right\},
\end{aligned}
$$

where supremum and infimum are taken over all naturals $n, m, l \in \mathbb{N}$, functions $k:\{1, \ldots, n\} \times$ $\{1, \ldots, m\} \rightarrow\{1, \ldots, l\}$, partitions $\left(x_{1}, \ldots, x_{n}\right) \in \operatorname{Prt}(x)$ and $\left(y_{1}, \ldots, y_{m}\right) \in \operatorname{Prt}(y)$, and arbitrary finite collections $b_{1} \ldots, b_{l} \in \mathscr{B}$.
\triangleleft See [6, Proposition 2.6]. \triangleright
2.3. Theorem. Let E, F, and G be vector lattices with G Dedekind complete, $b_{1}, \ldots, b_{N} \in B L^{r}(E, F ; G)$, and $\mathfrak{b}:=\left(b_{1}, \ldots, b_{N}\right)$. Assume that $\varphi \in \mathscr{H}_{\vee}\left(\mathbb{R}^{N}\right), \psi \in \mathscr{H}_{\wedge}\left(\mathbb{R}^{N}\right)$, $\widehat{\varphi}\left(b_{1}\left(x_{0}, y_{0}\right), \ldots, b_{N}\left(x_{0}, y_{0}\right)\right)$ and $\widehat{\psi}\left(b_{1}\left(x_{0}, y_{0}\right), \ldots, b_{N}\left(x_{0}, y_{0}\right)\right)$ are well defined in G for all $0 \leqslant x_{0} \leqslant x$ and $0 \leqslant y_{0} \leqslant y, \varphi(\mathfrak{b} ; x, y)$ is order bonded above, and $\psi(\mathfrak{b} ; x, y)$ is order bounded below for all $x \in E_{+}$and $y \in F_{+}$. Then $\widehat{\varphi}\left(b_{1}, \ldots, b_{N}\right)$ and $\widehat{\psi}\left(b_{1}, \ldots, b_{N}\right)$ are well defined in $B L^{r}(E, F ; G)$ and for every $x \in E_{+}$and $y \in F_{+}$the representations

$$
\begin{gathered}
\widehat{\varphi}\left(b_{1}, \ldots, b_{N}\right)(x, y)=\sup \varphi(\mathfrak{b} ; x, y) \\
\widehat{\psi}\left(b_{1}, \ldots, b_{N}\right)(x, y)=\inf \psi(\mathfrak{b} ; x, y)
\end{gathered}
$$

hold with supremum over upward directed set and infimum over downward directed set. If E and F have the strong Freudenthal property (or principal projection property) then $\operatorname{Prt}(x)$ and $\operatorname{Prt}(y)$ may be replaced by $\operatorname{DPrt}(x)$ and $\operatorname{DPrt}(y)$, respectively.
\triangleleft Denote $b_{\lambda}:=\lambda_{1} b_{1}+\cdots+\lambda_{N} b_{N}$ for $\lambda:=\left(\lambda_{1}, \ldots, \lambda_{N}\right) \in \mathbb{R}^{N}$ and observe that if the set $\left\{b_{\lambda}: \lambda \in \underline{\partial} \varphi\right\}$ is order bounded in $B L^{r}(E, F ; G)$, then by [5, Theorem 4.4] $\widehat{\varphi}\left(b_{1}, \ldots, b_{N}\right)$ exists in $B L^{r}(E, F ; G)$ and the upper envelope representation $\widehat{\varphi}\left(b_{1}, \ldots, b_{N}\right)=\sup \left\{b_{\lambda}: \lambda \in \underline{\partial} \varphi\right\}$ holds. Take arbitrary $\lambda^{r}:=\left(\lambda_{1}^{r}, \ldots, \lambda_{N}^{r}\right) \in \underline{\partial} \varphi(r:=1, \ldots, l), k:\{1, \ldots, n\} \times\{1, \ldots, m\} \rightarrow$ $\{1, \ldots, l\}, \mathfrak{x}:=\left(x_{1}, \ldots, x_{n}\right) \in \operatorname{Prt}(x)$, and $\mathfrak{y}:=\left(y_{1}, \ldots, y_{m}\right) \in \operatorname{Prt}(y)$. Making use of Lemma 2.2 and [5, Theorem 4.4] we deduce:

$$
\sum_{i, j=1}^{n, m} b_{\lambda^{k(i, j)}}\left(x_{i}, y_{j}\right)=\sum_{i, j=1}^{n, m} \sum_{s=1}^{N} \lambda_{s}^{k(i, j)} b_{s}\left(x_{i}, y_{j}\right) \leqslant \sum_{i, j=1}^{n, m} \widehat{\varphi}\left(b_{1}\left(x_{i}, y_{j}\right), \ldots, b_{N}\left(x_{i}, y_{j}\right)\right) \leqslant a
$$

where a is an upper bound of $\varphi(\mathfrak{b} ; x, y)$. Passing to supremum over all $\left(\lambda^{1} \ldots, \lambda^{l}\right), k, \mathfrak{x}$, and \mathfrak{y} and taking [5, Theorem 4.4] into account we get that $\widehat{\varphi}\left(b_{1}, \ldots, b_{N}\right)$ is well defined and $\widehat{\varphi}\left(b_{1}, \ldots, b_{N}\right)(x, y) \leqslant \varphi(\mathfrak{b} ; x, y)$. Surely, in above reasoning we could take $\left(x_{1}, \ldots, x_{n}\right) \in$ $\operatorname{DPrt}(x)$ provided that E has the principal projection property.

Conversely, let $f(x, y)$ stands for the right-hand side of the first equality. Observe that if $\left(\lambda_{1}, \ldots, \lambda_{n}\right) \in \underline{\partial} \varphi$ and $u \in E_{+}, v \in F_{+}$, then by [5, Theorem 4.4] we have

$$
\sum_{k=1}^{N} \lambda_{k} b_{k}(u, v)=\left(\sum_{k=1}^{N} \lambda_{k} b_{k}\right)(u, v) \leqslant \widehat{\varphi}\left(b_{1}, \ldots, b_{N}\right)(u, v)
$$

and again $\widehat{\varphi}\left(b_{1}(u, v), \ldots, b_{N}(u, v)\right) \leqslant \widehat{\varphi}\left(b_{1}, \ldots, b_{N}\right)(u, v)$ by [5, Theorem 4.4]. Now, given $\left(x_{1}, \ldots, x_{n}\right)$ in $\operatorname{Prt}(x)$ or $\operatorname{DPrt}(x)$ and $\left(y_{1}, \ldots, y_{n}\right)$ in $\operatorname{Prt}(y)$ or $\operatorname{DPrt}(y)$, we can estimate

$$
\sum_{i, j=1}^{n, m} \widehat{\varphi}\left(b_{1}\left(x_{i}, y_{j}\right), \ldots, b_{N}\left(x_{i}, y_{j}\right)\right) \leqslant \sum_{i, j=1}^{n, m} \widehat{\varphi}\left(b_{1}, \ldots, b_{N}\right)\left(x_{i}, y_{j}\right) \leqslant \widehat{\varphi}\left(b_{1}, \ldots, b_{N}\right)(x, y)
$$

and thus $f(x, y) \leqslant \widehat{\varphi}\left(b_{1}, \ldots, b_{N}\right)(x, y)$. Thus the first equality is hold true. By Lemma 2.1 the supremum on the right-hand side of the required formula is taken over upward directed set.

The second representation is proved in a similar way. \triangleright
2.4. Corollary. Let $E, F, G, \varphi, \psi, b_{1}, \ldots, b_{N}$ be the same as in $2.1, \bar{b}:=\widehat{\varphi}\left(b_{1}, \ldots, b_{N}\right)$ and $\underline{b}:=\widehat{\psi}\left(b_{1}, \ldots, b_{N}\right)$. Assume that, in addition, $E=F$ has the strong Freudenthal property and b_{1}, \ldots, b_{N} are orthosymmetric. Then for every $x \in E$ the representations

$$
\begin{aligned}
& \bar{b}(x, x)=\sup \left\{\sum_{i=1}^{n} \varphi\left(b_{1}\left(x_{i},|x|\right), \ldots, b_{N}\left(x_{i},|x|\right)\right):\left(x_{1}, \ldots, x_{n}\right) \in \operatorname{DPrt}(|x|)\right\} \\
& \underline{b}(x, x)=\inf \left\{\sum_{i=1}^{n} \psi\left(b_{1}\left(x_{i},|x|\right), \ldots, b_{N}\left(x_{i},|x|\right)\right):\left(x_{1}, \ldots, x_{n}\right) \in \operatorname{DPrt}(|x|)\right\}
\end{aligned}
$$

hold with supremum and infimum over upward and downward directed sets, respectively.
\triangleleft It is sufficient to check the first formula. We can assume $x \in E_{+}$. Denote by $g(x)$ the right-hand side of the desired equality. From Theorem 2.3 we have $g(x) \leqslant \widehat{\varphi}\left(b_{1}, \ldots, b_{N}\right)(x, x)$. To prove the reverse inequality take two disjoint partitions of x, say $\mathfrak{x}^{\prime}:=\left(x_{1}^{\prime}, \ldots, x_{l}^{\prime}\right)$ and $\mathfrak{x}^{\prime \prime}:=$ $\left(x_{1}^{\prime \prime}, \ldots, x_{m}^{\prime \prime}\right)$, and let $\left(x_{1}, \ldots, x_{n}\right) \in \operatorname{DPrt}(x)$ be their common refinement. Since b_{1}, \ldots, b_{N} are orthosymmetric we deduce

$$
\begin{aligned}
\sum_{r, s=1}^{l, m} \widehat{\varphi}\left(b_{1}\left(x_{r}^{\prime}, x_{s}^{\prime \prime}\right), \ldots,\right. & \left.b_{N}\left(x_{r}^{\prime}, x_{s}^{\prime \prime}\right)\right) \\
& =\sum_{i=1}^{n} \widehat{\varphi}\left(b_{1}\left(x_{i}, x_{i}\right), \ldots, b_{N}\left(x_{i}, x_{i}\right)\right)=\sum_{i=1}^{n} \widehat{\varphi}\left(b_{1}\left(x_{i}, x\right), \ldots, b_{N}\left(x_{i}, x\right)\right)
\end{aligned}
$$

Passing to supremum over all \mathfrak{x}^{\prime} and $\mathfrak{x}^{\prime \prime}$ we get the desired inequality. \triangleright

3. Functions of Linear Operators

The above machinery is applicable to the calculus of order bounded operators.
3.1. Theorem. Let E and F be vector lattices with F Dedekind complete, $T_{1}, \ldots, T_{N} \in$ $L^{r}(E, F)$, and $\mathfrak{T}:=\left(T_{1}, \ldots, T_{N}\right)$. Let $\varphi \in \mathscr{H}_{\vee}\left(\mathbb{R}^{N}\right), \psi \in \mathscr{H}_{\wedge}\left(\mathbb{R}^{N}\right), \widehat{\varphi}\left(T_{1} x_{0}, \ldots, T_{N} x_{0}\right)$ and $\widehat{\psi}\left(T_{1} x_{0}, \ldots, T_{N} x_{0}\right)$ are well defined in F for all $0 \leqslant x_{0} \leqslant x$. If for every $x \in E_{+}$the sets

$$
\begin{aligned}
& \varphi(\mathfrak{T} ; x)=\left\{\sum_{k=1}^{n} \widehat{\varphi}\left(T_{1} x_{k}, \ldots, T_{N} x_{k}\right):\left(x_{1}, \ldots, x_{n}\right) \in \operatorname{Prt}(x)\right\} \\
& \psi(\mathfrak{T} ; x)=\left\{\sum_{k=1}^{n} \widehat{\psi}\left(T_{1} x_{k}, \ldots, T_{N} x_{k}\right):\left(x_{1}, \ldots, x_{n}\right) \in \operatorname{Prt}(x)\right\}
\end{aligned}
$$

are order bounded from above and from below respectively, then $\widehat{\varphi}\left(T_{1}, \ldots, T_{N}\right)$ and $\widehat{\psi}\left(T_{1}, \ldots, T_{N}\right)$ exist in $L^{r}(E, F)$, and the representations

$$
\begin{gathered}
\widehat{\varphi}\left(T_{1}, \ldots, T_{N}\right) x=\sup \varphi(\mathfrak{T} ; x) \\
\widehat{\psi}\left(T_{1}, \ldots, T_{N}\right) x=\inf \psi(\mathfrak{T} ; y)
\end{gathered}
$$

hold with supremum over upward directed set and infimum over downward directed set. If E has the principal projection property then $\operatorname{Prt}(x)$ may be replaced by $\operatorname{DPrt}(x)$.
\triangleleft Follows immediately from 2.3. \triangleright
3.2. Remark. (1) Assume that $E, F, T_{1}, \ldots, T_{N}, \varphi$, and ψ are the same as in $[4$, Theorem
5.2]. Then $\widehat{\varphi}\left(T_{1}, \ldots, T_{N}\right) x \geqslant \widehat{\varphi}\left(T_{1} x, \ldots, T_{N} x\right)$ and $\widehat{\psi}\left(T_{1}, \ldots, T_{N}\right) x \leqslant \widehat{\psi}\left(T_{1} x, \ldots, T_{N} x\right)$ for all $x \in E_{+}$. In particular, if $\mathbb{R}_{+}^{N} \subset \operatorname{dom}(\varphi) \cap \operatorname{dom}(\psi)$ and $\widehat{\varphi}\left(T_{1} x, \ldots, T_{N} x\right) \geqslant \widehat{\psi}\left(T_{1} x, \ldots, T_{N} x\right)$ for all $x \in E_{+}$, then $\widehat{\varphi}\left(T_{1}, \ldots, T_{N}\right) \geqslant \widehat{\psi}\left(T_{1}, \ldots, T_{N}\right)$.
(2) Assume that $\varphi \in \mathscr{H}(C ;[\mathfrak{x}])$ and $\varphi\left(0, t_{2}, \ldots, t_{N}\right)=0$ for all $\left(t_{1}, \ldots, t_{N}\right) \in \operatorname{dom}(\varphi)$. Then evidently $\widehat{\varphi}\left(x_{1}, \ldots, x_{N}\right) \in\left\{x_{1}\right\}^{\perp \perp}$ provided that $[\mathfrak{x}] \subset \operatorname{dom}(\varphi)$. This simple observation together with [4, Theorem 5.2] enables one to attack the nonlinear majorization problem for wider variety of majorants $\widehat{\varphi}\left(T_{1}, \ldots, T_{N}\right)$, cp. [2].
3.3. Let E and F be vector lattices with E relatively uniformly complete and F Dedekind complete. Then for $T_{1}, \ldots, T_{N} \in L_{+}^{r}(E, F), x_{1}, \ldots, x_{N} \in E_{+}$, and $\alpha_{1}, \ldots, \alpha_{N} \in \mathbb{R}_{+}$with $\alpha_{1}+\cdots+\alpha_{N}=1$ we have

$$
\left(T_{1}^{\alpha_{1}} \ldots T_{N}^{\alpha_{N}}\right)\left(x_{1}^{\alpha_{1}} \ldots x_{N}^{\alpha_{N}}\right) \leqslant\left(T_{1} x_{1}\right)^{\alpha_{1}} \ldots\left(T_{N} x_{N}\right)^{\alpha_{N}}
$$

The reverse inequality holds provided that $\alpha_{1}+\cdots+\alpha_{N}=1,(-1)^{k}\left(1-\alpha_{1}-\cdots-\alpha_{k}\right) \alpha_{1} \cdot \ldots \cdot \alpha_{k} \geqslant$ $0(k:=1, \ldots, N-1)$, and $x_{i} \gg 0, f\left(x_{i}\right) \gg 0$ for all i with $\alpha_{i}<0$.
\triangleleft Apply [4, Corollary 6.7] with $K=\mathbb{R}_{+}^{N}, C=1, \varphi_{0}(t)=\varphi_{1}(t)=\varphi_{2}(t)=t_{1}^{\alpha_{1}} \ldots t_{N}^{\alpha_{N}} . \triangleright$
3.4. Theorem. Let E and F be vector lattices with F Dedekind complete and $T_{1}, \ldots, T_{N} \in L_{+}^{r}(E, F)$. Suppose that $\varphi \in \mathscr{G}_{\vee}\left(\mathbb{R}^{N}, \mathbb{R}_{+}^{N}\right)$ and $\psi \in \mathscr{G}_{\wedge}\left(\mathbb{R}^{N}, \mathbb{R}_{+}^{N}\right)$ are increasing and $\left[T_{1}, \ldots, T_{N}\right] \subset \operatorname{dom}(\varphi) \cap \operatorname{dom}(\psi)$. Then for every $x \in E_{+}$the representations hold

$$
\begin{aligned}
& \widehat{\varphi}\left(T_{1}, \ldots, T_{N}\right) x=\sup \left\{\sum_{k=1}^{N} T_{k} x_{k}: x_{1}, \ldots, x_{N} \in E_{+}, \widehat{\varphi^{\circ}}\left(x_{1}, \ldots, x_{N}\right) \leqslant x\right\} \\
& \widehat{\psi}\left(T_{1}, \ldots, T_{N}\right) x=\inf \left\{\sum_{k=1}^{N} T_{k} x_{k}: x_{1}, \ldots, x_{N} \in E_{+}, \widehat{\psi_{0}}\left(x_{1}, \ldots, x_{N}\right) \geqslant x\right\},
\end{aligned}
$$

with supremum over upward directed set and infimum over downward directed set.
\triangleleft Suppose that $\widehat{\varphi}\left(T_{1}, \ldots, T_{N}\right)$ exists and $x \in E_{+}$. If $x_{1}, \ldots, x_{N} \in E_{+}$and $\widehat{\varphi^{\circ}}\left(x_{1}, \ldots, x_{N}\right) \leqslant x$, then making use of the Bipolar Theorem, positivity of $\widehat{\varphi}\left(T_{1}, \ldots, T_{N}\right)$, and [4, Corollary 6.8] we deduce

$$
\sum_{k=1}^{N} T_{k} x_{k} \leqslant \widehat{\varphi}\left(T_{1}, \ldots, T_{N}\right)\left(\widehat{\varphi^{\circ}}\left(x_{1}, \ldots, x_{N}\right)\right) \leqslant \widehat{\varphi}\left(T_{1}, \ldots, T_{N}\right) x
$$

To prove the reverse inequality take $\left(x_{1}, \ldots, x_{n}\right) \in \operatorname{Prt}(x), \lambda^{k}=\left(\lambda_{1}^{k}, \ldots, \lambda_{N}^{k}\right) \in \underline{\partial} \varphi=$ $\left\{\varphi^{\circ} \leqslant 1\right\}(k:=1, \ldots, n)$, and put $u_{i}:=\sum_{k=1}^{n} \lambda_{i}^{k} x_{k}$. If $\alpha:=\left(\alpha_{1}, \ldots, \alpha_{N}\right) \in \underline{\partial} \varphi^{\circ}=\{\varphi \leqslant 1\}$, then $\left\langle\alpha, \lambda^{k}\right\rangle \leqslant \varphi(\alpha) \varphi^{\circ}\left(\lambda^{k}\right) \leqslant 1$ and thus

$$
\sum_{i=1}^{N} \alpha_{i} u_{i}=\sum_{i=1}^{N} \alpha_{i} \sum_{k=1}^{n} \lambda_{i}^{k} x_{k}=\sum_{k=1}^{n}\left\langle\alpha, \lambda^{k}\right\rangle x_{k} \leqslant x
$$

It follows from $\left[5\right.$, Theorem 5.4] that $\widehat{\varphi^{\circ}}\left(u_{1}, \ldots, u_{N}\right) \leqslant x$.
Denote $S(\lambda):=\lambda_{1} T_{1}+\cdots+\lambda_{N} T_{N}$ with $\lambda:=\left(\lambda_{1}, \ldots, \lambda_{N}\right)$. Let $f(x)$ is the right-hand side of the first equality. Then

$$
\sum_{k=1}^{n} S\left(\lambda^{k}\right)\left(x_{k}\right)=\sum_{i=1}^{N} T_{i} u_{i} \leqslant f(x)
$$

It remains to observe that $\varphi\left(T_{1}, \ldots, T_{N}\right)=\sup \{S(\lambda): \lambda \in \underline{\partial} \varphi\}$ by [5, Theorem 4.4]. \triangleright
3.5. Proposition. Let E, F, and G be vector lattices with F Dedekind complete, $R: E \rightarrow G$ an order interval preserving operator, $T: G \rightarrow F$ an order continuous lattice homomorphism, and $\varphi \in \mathscr{H}(C, K)$. Assume that $S_{1}, \ldots, S_{N} \in L^{r}(E, F)$ and $\left[S_{1}, \ldots, S_{N}\right] \subset$ K. Then $\left[S_{1} \circ R, \ldots, S_{N} \circ R\right] \subset K$ and

$$
\widehat{\varphi}\left(S_{1}, \ldots, S_{N}\right) \circ R=\widehat{\varphi}\left(S_{1} \circ R, \ldots, S_{N} \circ R\right)
$$

If, in addition, G is Dedekind complete, then $\left[T \circ S_{1}, \ldots, T \circ S_{N}\right] \subset K$ and

$$
T \circ \widehat{\varphi}\left(S_{1}, \ldots, S_{N}\right)=\widehat{\varphi}\left(T \circ S_{1}, \ldots, T \circ S_{N}\right)
$$

\triangleleft Under the indicated hypotheses the operators $S \mapsto S \circ R$ from $L^{r}(G, F)$ to $L^{r}(E, F)$ and $S \mapsto T \circ S$ from $L^{r}(E, G)$ to $L^{r}(E, F)$ are lattice homomorphisms, see [1, Theorem 7.4 and 7.5]. Therefore, it is sufficient to apply [5, Proposition 2.6].
3.6. Proposition. Let E and F be vector lattices with F Dedekind complete. Assume that $\varphi \in \mathscr{H}(C, K), S_{1}, \ldots, S_{N} \in L^{r}(E, F)$, and $\left[S_{1}, \ldots, S_{N}\right] \subset K$. If S^{*} denotes the restriction of the order dual S^{\prime} to F_{n}^{\sim}, the order continuous dual of F, then $\left[S_{1}^{*}, \ldots, S_{N}^{*}\right] \subset K$ and

$$
\widehat{\varphi}\left(S_{1}, \ldots, S_{N}\right)^{*}=\widehat{\varphi}\left(S_{1}^{*}, \ldots, S_{N}^{*}\right)
$$

\triangleleft By Krengel-Synnatschke Theorem [1, Theorem 5.11] the map $S \mapsto S^{*}$ is a lattice homomorphism from $L^{r}(E, F)$ into $L^{r}\left(F_{n}^{\sim}, E^{\sim}\right)$, see [1, Theorem 7.6]. Thus, we need only to apply [5, Proposition 2.6]. \triangleright
3.7. Proposition. The second formula in Theorem 3.4 and Proposition 3.6 were obtained by A. V. Bukhvalov [2] under some additional restrictions.

References

1. Aliprantis C. D., Burkinshaw O. Positive Operators.-N. Y.: Acad. Press, 1985.-367 p.
2. Bukhvalov A. V. Nonlinear majorization of linear operators // Dokl. Acad Nauk SSSR.-1988.-Vol. 298, № 1.-P. 14-17.
3. Kusraev A. G. Dominated Operators.-Dordrecht: Kluwer, 2000.—446 p.
4. Kusraev A. G. Homogeneous Functional Calculus on Vector Lattices.-Vladikavkaz, 2008.-34 p.(Preprint / IAMI VSC RAS; № 1).
5. Kusraev A. G. Functional calculus and Minkowski duality on vector lattices // Vladikavkaz Math. J.-2009.-Vol. 11, № 2.-P. 31-42.
6. Kusraev A. G., Tabuev S. N. On Disjointness Preserving Bilinear Operators // Vladikavkaz Math. J.-2004.-Vol. 6, № 1.-P. 58-70.

[^0]: © 2009 Kusraev A. G.
 ${ }^{1}$ Supported by a grant from Russian Foundation for Basic Research, project № 09-01-00442.

