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This note contains some properties of positive orthosymmetric bilinear operators on vector lattices which
are well known for almost f -algebra multiplication but despite of their simplicity does not seem appeared
in the literature.
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The aim of this note is to present some properties of orthosymmetric bilinear operators
which are well known for f -algebra multiplication but despite of their simplicity does not
seem appeared in the literature. All unexplained terms can be found in [1] or [13]. All vector
lattices under consideration are assumed to be Archimedean.

1. A bilinear operator b : E × E → G is called orthosymmetric if x ∧ y = 0 implies
b(x, y) = 0 for all x, y ∈ E. This definition was introduced in [8]. Recall also that b is said
to be symmetric if b(x, y) = b(y, x) for all x, y ∈ E and positively semidefinite if b(x, x) > 0
for every x ∈ E. In the special case that b is the multiplication of a commutative almost
f -algebra the following proposition is presented in [2, Proposition 1.13].

Proposition 1. Let F and G be vector lattices. A positive bilinear operator b from E×E
to G is orthosymmetric if and only if b(x, y) = b(x ∨ y, x ∧ y) for all x, y ∈ E.

C Orthosymmetry implies b(x − x ∧ y, y − x ∧ y) = 0. Since a positive orthosymmetric
bilinear operastor is symmetric (see [8]), we deduce

b(x, y) = b(x, x ∧ y) + b(x ∧ y, y)− b(x ∧ y, x ∧ y)

= b(x+ y − x ∧ y, x ∧ y) = b(x ∨ y, x ∧ y).

Conversely, if x ∧ y = 0, then b(x, y) = b(x ∨ y, 0) = 0. B

A bilinear operator b : E × F → G is said to be lattice bimorphism if the mappings
y 7→ b(e, y) (y ∈ F ) and x 7→ b(x, f) (x ∈ E) are lattice homomorphisms for all 0 6 e ∈ E
and 0 6 f ∈ F , see [11]. Evidently, every lattice bimorphism is positive. The following
characterization of lattice bimorphism was given in [15].

Proposition 2. For a positive bilinear operator b : E × E → G the following assertions

are equivalent:

(1) b is a lattice bimorphism;

(2) |b(x, y)| = b(|x|, |y|) for all x ∈ E and y ∈ F ;
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(3) if 0 6 x, u ∈ E and 0 6 y, v ∈ F satisfy x∧u = 0 and y∧v = 0, then b(x, y)∧b(u, v) = 0.

2. It was mentioned in [12] that an orthosymmetric positive bilinear operator is positively
semidefinite. The converse is also true for lattice bimorphisms as was observed in [7,
Proposition 1.7]. The following characterization of symmetric lattice bimorphisms is well
known at least for d-algebra multiplication (see, for example, [2, Theorems 4.3, 4.4, 4.5] and
[4, Proposition 3.6]).

Theorem 1. Let E and F be vector lattices and let b : E×E → F be a lattice bimorphism.

Then the following assertions are equivalent:

(1) b is symmetric;

(2) b(x, x)− b(y, y) = b(x− y, x+ y) for all x, y ∈ E;

(3) b(x, x) ∧ b(y, y) 6 b(x, y) 6 b(x, x) ∨ b(y, y) for all x, y ∈ E+;

(4) b(x∧ y, x∧ y) = b(x, x)∧ b(y, y) and b(x∨ y, x∨ y) = b(x, x)∨ b(y, y) for all x, y ∈ E+;

(5) x ∧ y = 0 implies b(x, y) = b(y, x) for all x, y ∈ E;

(6) b(x, |x|) = b(x+, x+)− b(x−, x−) for all x ∈ E;

(7) b is orthosymmetric;

(8) b is positively semidefinite.

C (1) ⇔ (2): It is obviously true for every bilinear operator b.
(2) ⇒ (3): For any x, y ∈ E+ we deduce making use of (2):

b(x, x)∧b(y, y)− b(x, y) 6 b(x, x) ∧ b(y, y)− b(x ∧ y, x ∧ y)

=[b(x, x)− b(x ∧ y, x ∧ y)] ∧ [b(y, y)− b(x ∧ y, x ∧ y)]

=b(x− x ∧ y, x+ x ∧ y) ∧ b(y − x ∧ y, y + x ∧ y)

6b(x− x ∧ y, x+ y) ∧ b(y − x ∧ y, x+ y)

=b((x− x ∧ y) ∧ (y − x ∧ y), x+ y) = 0.

The second inequality is deduced likewise.
(3) ⇒ (4): Using the first inequality in (3) we can write the following chain of equalities:

b(x, x) ∧ b(y, y) = [b(x, x) ∧ b(x, y)] ∧ [b(y, x) ∧ b(y, y)]

= b(x, x ∧ y) ∧ b(y, x ∧ y) = b(x ∧ y, x ∧ y).

The second equality is deduced likewise.
(4) ⇒ (5): Take x, y ∈ E with x∧ y = 0. By the first equality of (3) b(x, x) and b(y, y) are

disjoint. Using the second equality we have b(x, x)+b(y, y) = b(x∨y, x∨y) = b(x+y, x+y) =
b(x, x) + b(x, y) + b(y, x) + b(y, y), so that b(x, y) = b(y, x) = 0.

(5) ⇒ (6): It is sufficient to observe that b(x, |x|) − b(x+, x+) + b(x−, x−) = b(x+, x−) −
b(x−, x+).

(6) ⇒ (7): If b obey (6), then b(x+, x−) and b(x−, x+) coincide, see (5) ⇒ (6). At the
same time these elements are disjoint, since b(x+, x−) 6 b(x+, |x|), b(x−, x+) 6 b(x−, |x|) and
b(x+, |x|) ∧ b(x−, |x|) = 0. Thus, b(x+, x−) = b(x−, x+) = 0, from which (7) follows

(7) ⇒ (1): Follows from [8, Corollary 2].
(7) ⇒ (8): If b is ortosymmetric, then b(x, x) = b(x+, x+) − b(x+, x−) − b(x−, x+) +

b(x−, x−) = b(x+, x+) + b(x−, x−) > 0, see [12].
(8) ⇔ (7): Let b be a positively semidefinite lattice bimorphism. Take x, y ∈ E and put

α := b(x, x), β := b(y, y), γ := b(x, y) + b(y, x). Then α + β − γ = b(x − y, x − y) > 0. If
x ∧ y = 0, then b(x, y) > b(x, y) ∧ b(y, y) = b(x ∧ y, y) = 0 and, since b(x, ·) and b(·, x) are
lattice homomorphisms, we have α∧ b(x, y) = b(x, x∧y) = 0 and α∧ b(y, x) = b(x∧y, x) = 0.
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Thus, α ⊥ γ and analogously β ⊥ γ. Therefore, (α + β) ⊥ γ, and taking into account the
inequality α+ β − γ > 0 we derive γ = 0, i.e. b(x, y) = b(y, x) = 0. B

3. Let E be a vector lattice. A pair (E¯,¯) is said to be a square of E if the following
two conditions are fulfilled:

(1) E¯ is a vector lattice and ¯ is a symmetric lattice bimorphism from E × E to E¯,
(2) if b is a symmetric lattice bimorphism from E×E to some vector lattice F , then there

exists a unique lattice homomorphism Φb : E
¯ → F with b = Φb¯.

For an arbitrary vector lattice E there exists the square (E¯,¯) which is essentially unique,
i. e. if some pair (E},}) obeys (1) and (2) above, then there exists a lattice isomorphism i
from E¯ onto E} such that i¯ = } (and, of course, i−1} = ¯), see [10]. Moreover (see [10]
and [7, Theorem 3.1]), for every positive bilinear orthoregular operator b : E ×E → G there
exists a unique linear regular operator Φb : E

¯ → G such that

b(x, y) = Φb(x¯ y) (x, y ∈ E).

The symmetric lattice bimorphism ¯ : E × E → E¯ is called the canonical bimorphism
of the square. The operator Φb is called the linearization of b via square. If E is a sublattice
of a semiprime f -algebra A, then the canonical bimorphism ¯ can be expressed in terms of
the algebra multiplication, see [7, Proposition 2.5].

Proposition 3. Let A be a semiprime f -algebra with a multiplication • and E be

a sublattice of A. Then there exists a sublattice F ⊂ A and an isomorphism ι from E¯

onto F such that ι(x¯ y) = x • y for all x, y ∈ E. In other words, the pair (F, •) is a square

of E.

4. A vector lattice E is called square-mean closed if the set {(cos θ)x+ (sin θ)y : 0 6 θ <
2π} has a supremum s(x, y) in E for all x, y ∈ E. A vector lattice E is called geometric-mean
closed if the set {(t/2)x+(1/2t)y : 0 < t < +∞} has an infimum g(x, y) in E for all x, y ∈ E+.
The following result see in [5, Theorems 3.1 and 3.4].

Proposition 4. If A is a square-mean closed Archimedean f -algebra, then

s(x, y)2 = x2 + y2 (x, y ∈ A).

If A is a geometric-mean closed Archimedean f -algebra, then

g(x, y)2 = xy (x, y ∈ A+).

Every relatively uniformly complete vector lattice is square-mean closed and geometric-
mean closed [5, Theorems 3.3]. However, neither a square-mean closed nor a geometric-mean
closed Archimedean vector lattice need not be uniformly complete. But a geometric-mean
closed Archimedean f -algebra is square-mean closed [5, Theorem 3.6]. The following result is
a generalization of Proposition 4.

Theorem 2. Let E and F be vector lattices and b : E×E → F a positive orthosymmetric

bilinear operator. If E is square-mean closed, then

s(x, y)¯ s(x, y) = x¯ x+ y ¯ y,

b(s(x, y), s(x, y)) = b(x, x) + b(y, y)

for all x, y ∈ E. If E is geometric-mean closed, then for all x, y ∈ E+ we have

g(x, y)¯ g(x, y) = x¯ y,

b(g(x, y), g(x, y)) = b(x, y).
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C In each of two cases under consideration the second equality follows from the first one
by applying Φb, the linearization via square of b. Let A denotes the universal completion of E
endowed with a semiprime f -algebra multiplication. Then by Proposition 3 there is a lattice
isomorphism ι of E¯ onto a sublattice F ⊂ A. At the same time, according to Proposition 4,
the following equalities are true in A:

s(x, y) • s(x, y) = x • x+ y • y (x, y ∈ E),

g(x, y) • g(x, y) = x • y (x, y ∈ E+).

Now, the first equalities are immediate by applying ι−1, since s(x, y) ∈ E and g(x, y) ∈ E
under the stated hypotheses and ι−1(x • y) = x¯ y. B

5. In conclusion we present some corollaries to Theorem 2.

Corollary 1. Let E and F be vector lattices with E square-mean closed and b : E×E → F

be a positive orthosymmetric bilinear operator. Then E
(b)
+ := {b(x, x) : x ∈ E} is a convex

pointed cone and E(b) := b(E × E) is a vector subspace of F ordered by a positive cone E
(b)
+

such that E(b) = E
(b)
+ − E

(b)
+ . If, in addition, b is a lattice bimorphism, then E(b) is a vector

sublattice of F .

C The first part of Theorem 2 implies that E(b)
+ ⊂ F+ is a pointed cone. The equalities

b(x, y) = (1/4)[b(x+y, x+y)−b(x−y, x−y)]) and b(x, x)−b(y, y) = b(x+y, x−y) show that

E(b) = E
(b)
+ −E

(b)
+ . Thus, (E(b), E(b)+ ) is an ordered vector space. If b is a lattice bimorphism,

then E(b)+ is a sublattice of F+ in virtue of Theorem 1 (2). B

For an almost f -algebra multiplication this result was obtained in [4, Prposition 3.3,
Corollary 3.7]. The first statement of the following corollary was proved in [9, Lemma 8] in
case of uniformly complete E.

Corollary 2. Let E be a square-mean closed vector lattice. The the assertions hold:

(1) E¯ = {x¯ y : x, y ∈ E} and E¯

+ = {x¯ x : x ∈ E};
(2) If F = h(E), then F¯ = h¯(E¯) for any vector lattice F and lattice homomorphism

h : E → F ;

(3) If J is a uniformly closed order ideal of E, then J ¦ := {x ¯ y : |x| ∧ |y| ∈ J} is a

uniformly closed order ideal of E¯ and the map x¯ y + J¦ 7→ (x+ J)¯ (y + J) implements

a lattice isomorphism of E¯/J¦ onto (E/J)¯.

C (1) Put b := ¯ in Corollary 1 and observe that E¯ = E(b), since E¯ coincides with the
sublattice generated by b(E × E) = {x¯ y : x, y ∈ E}.

(2) If h : F → E is a lattice homomorphism then by [7, Proposition 2.4] there exists a
lattice homomorphism h¯ : F¯ → E¯ such that h¯(x¯ y) = h(x)¯ h(y) (x, y ∈ F ). Assume
that T (E) = F . Then making use of by (1) we deduce

E¯ = {h(x)¯ h(y) : x, y ∈ F} = {h¯(x¯ y) : x, y ∈ F ) ⊂ h¯(F¯) ⊂ E¯.

(3): If φ : E → E/J is a quotient homomorphism, then φ¯ is a surjective map from E¯

to (E/J)¯ by (2). According to (1) any u ∈ E¯ have the representation u = x ¯ y for some
x, y ∈ E and 0 = φ¯(u) = φ(x) ¯ φ(y) implies φ(x) ⊥ φ(y) by [7, Theorem 2.1 (3)]. But the
latter is equivalent to |x| ∧ |y| ∈ J , since φ is a lattice homomorphism. Thus, J ¦ = ker(φ¯)
and the proof is complete. B

Corollary 3. Let E and F be vector lattices with E square-mean closed and let b :
E × E → F be an order bounded orthosymmetric bilinear operator. Then for any finite

collections x1, y1, . . . , xN , yN ∈ E there exist u, v ∈ E such that
∑N

k=1 b(xk, yk) = b(u, v).



On some properties of orthosymmetric bilinear operators 33

C According to Corollary 1 (1) there exist u, v ∈ E such that u¯ v =
∑N

k=1 xk ¯ yk. Now,
if b = Φb¯ for a linear operator Φb from E¯ to F , then

b(u, v) = Φb(u¯ v) = Φb

(
N∑

k=1

xk ¯ yk

)
=

N∑

k=1

b(xk, yk)

which is the desired representation. B
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