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1. Introduction

Definition 1.1. An increasing continuous function ω : [0,∞)→ [0,∞) is called a weight
function if

log t = o(ω(t)), t→∞;

ω(t) = O(t); t→∞;

ϕω(x) := ω(ex) is convex on [x0,∞).

A weight function ω with
∞∫
1

t−2ω(t) dt <∞ is called nonquasianalytic.

Denote by W↑ the set of all sequences Ω = {ωn}∞n=1 of weight functions with the folllowing
property: for each n ∈ N there exists a Cn > 0 such that

ωn(t) + log(t+ 1) 6 ωn+1(t) + Cn for t > 0. (1)

By Wnq
↑ denote the set of all sequences Ω = {ωn}∞n=1 of nonquasianalytic weight functions ωn.

Without loss of generality we can assume that

ωn(t) 6 ωn+1(t) for t > 0 and n ∈ N.

The Young conjugate ϕ∗ω : [0,∞)→ [0,∞) of ϕω is defined by

ϕ∗ω(y) := sup{xy − ϕω(x) : x > 0}.

For A ∈ (0,∞) we define the space

Eω(Π
N
A ) :=

{
f ∈ C∞(ΠNA ) : |f |ω,A,N := sup

α∈NN0

sup
‖x‖6A

∣∣f (α)(x)
∣∣

eϕ∗ω(|α|)
<∞

}
,

where ΠNA := {x ∈ R
N : ‖x‖ 6 A}, ‖x‖ := max{|xj | : 1 6 j 6 N} for x = (x1, . . . , xN ) ∈

R
N , |α| := α1 + . . .+ αN for α = (α1, . . . , αN ) ∈ N

N
0 , f (α) :=

∂|α|f

∂xα1
1 . . . ∂xαNN

.
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Next, for a weight sequence Ω = {ωn}∞n=1 ∈W↑ we put

E(Ω)(Π
N
A ) :=

∞⋂

n=1

Eωn(Π
N
A );

E(Ω)(R
N ) :=

{
f ∈ C∞(RN ) : f

∣∣
ΠN
A

∈ E(Ω)(Π
N
A ) for each A > 0

}
.

The elements of E(Ω)(R
N ) are called Ω-ultradifferentiable functions of Beurling type.

Let us introduce now the corresponding spaces of sequences of complex numbers:

E
N
ω :=

{
d = (dα)α∈NN0

∈ C
NN0 : |d|ω,N := sup

α∈NN0

|dα|
eϕ∗ω(|α|)

<∞
}

and

E
N
(Ω) :=

∞⋂

n=1

E
N
ωn .

It is clear that the restriction operator ρ : f ∈ C∞(RN ) 7→
(
f (α)(0)

)
α∈NN0

acts from E(Ω)(R
N )

into E N
(Ω). If ρ is surjective, we will say that a version of Borel’s extension theorem holds for

the space E(Ω)(R
N ) (for the original Borel’s extension theorem see [7]). For minimal Beurling

class (ωn = nω, ω is nonquasianalytic and ω(2t) = O(ω(t)) as t → ∞) Meise and Taylor [8]
have shown that E(Ω)(R

N ) admits a version of Borel’s extension theorem if and only if ω is

strong, i. e. there exists a C > 0 such that
∞∫
1

t−2ω(yt) dt 6 Cω(y) + C for y > 0. The case of

normal Beurling class, when Ω = {qnω}∞n=1 with qn ↑ q ∈ (0,∞) and ω is a nonquasianalytic
almost subadditive weight function, has been studied by the author in [4]. In this case, ρ :

E(Ω)(R
N )→ E N

(Ω) is surjective iff ω is slowly varying, i. e. lim
t→∞

ω(2t)
ω(t) = 1.

The main result of the present article is the following theorem.

Theorem. Let Ω = {ωn}∞n=1 ∈W
nq
↑ . Each of the following two conditions is sufficient for

E(Ω)(R
N ) to admit a version of Borel’s extension theorem:

(I) for every n ∈ N there exist m ∈ N and C > 0 such that

1

π

∞∫

−∞

ωn(‖ξ + tη‖)
t2 + 1

dt 6 ωm(‖ξ + iη‖) + C for ξ + iη ∈ C
N ;

(II) for every n ∈ N there exist m ∈ N and C > 0 such that

ωn(2t) 6 ωm(t) + C for t > 0

and

4

π

∞∫

1

ωn(yt)

t2 + 1
dt 6 ωm(y) + C for y > 0.

Suppose additionally that for each n ∈ N there are m ∈ N and C > 0 so that ωn(x+ y) 6
ωm(x) + ωm(y) + C for x, y > 0. If Borel’s extension theorem holds for E(Ω)(R

N ) for at least
one N ∈ N, then
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(III) for every n ∈ N there exist m ∈ N and C > 0 such that

2

π

∞∫

0

ωn(yt)

t2 + 1
dt 6 ωm(y) + C for y > 0 .

This theorem generalizes the results of [8] and [4] mentioned above. It should be also noted
that (II) implies (I).

The paper has five sections. In Section 2 we get a criterion of surjectivity of ρ in terms of
entire functions. In Section 3, using the method of Meise and Taylor [8], we obtain sufficient
conditions on Ω ∈W nq

↑ under which E(Ω)(R
N ) admits a version of Borel’s extension theorem.

Necessary conditions are derived in Section 4 by the method of [8] and [1]. The last section
consists of two new examples of Beurling classes. We show that Borel’s extension theorem
holds for the first class and does not hold for the second one.

The author is grateful to professor Yu. F. Korobeinik for useful discussions.

2. Criterion in terms of entire functions

Let Ω = {ωn}∞n=1 be in W↑, and let the topology of E(Ω)(R
N ) (resp. E N

(Ω)) be given by the

system of seminorms
(
| · |ωn,n,N

)
n∈N

(resp. by the normsystem
(
| · |ωn,N

)
n∈N

).
For a weight function ω and a number A ∈ (0,∞) we define the following space of entire

functions

Hω,A(C
N ) :=

{
f ∈ H(CN ) : ‖f‖ω,A,N := sup

z∈CN

|f(z)|
eA‖Imz‖+ω(‖z‖)

<∞
}
,

where ‖z‖ = max{|zj | : 1 6 j 6 N} for z = (z1, . . . , zN ) ∈ C
N . Obviously, Hω,A(C

N ) is a
Banach space with the norm ‖ · ‖ω,A,N . Next, for a weight sequence Ω = {ωn}∞n=1 ∈ W↑ we
put

H(Ω)(C
N ) :=

∞⋃

n=1

Hωn,n(C
N ), HN

(Ω) :=
∞⋃

n=1

Hωn,0(C
N ) .

Let H(Ω)(C
N ) (resp. HN

(Ω)) be equipped with the topology of ind
n∈N

Hωn,n(C
N ) (resp.

ind
n∈N

Hωn,0(C
N )). Note that HN

(Ω) and H(Ω)(R
N ) are (DFS)-spaces.

By theorem 1 of [3], the Fourier–Laplace transform

F̃ : µ 7→ µ̂(z) = µx

(
e−i〈x,z〉

)

is a topological isomorphism from
(
E(Ω)(R

N )
)′
b

onto H(Ω)(C
N ). As usual, we denote by E ′b

the strong dual of a local convex space E.
A description of

(
E N
(Ω)

)′
b

is given by

Proposition 2.1. Let eα, α ∈ N
N
0 , be unit vectors in R

NN0 , and Ω = {ωn}∞n=1 be in W↑.
Then the Fourier–Laplace transform

F : µ 7→ µ̂(z) =
∑

α∈NN0

µ(eα)(−iz)α

is a topological isomorphism from
(
E N
(Ω)

)′
b

onto HN
(Ω).

Here zα = zα1
1 . . . zαNN for z = (z1, . . . , zN ) ∈ C

N and α = (α1, . . . , αN ) ∈ N
N
0 .
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C Since the proof is very similar to that of [4], we omit it. It should be only pointed out
that the proof is based on the following property of Ω = {ωn}∞n=1 ∈ W↑ derived in Lemma 1
of [3]: if Bn is determined by the condition

ωn(t) 6 Bnt for t > 1, (2)

and Cn is determined by (1), then

ϕ∗ωn+1
(s)− ϕ∗ωn(s) 6 − log s+ log(Bne

Cn+1) for all s > 0. B

Now we have a commutative diagram

(
E(Ω)(R

N )
)′
b

ρ′←−−−−
(
E N
(Ω)

)′
b

F̃

y
yF

H(Ω)(C
N )

id←−−−− HN
(Ω)

where ρ′ is the conjugate operator of ρ. It is easily checked that F̃ ◦ ρ′ ◦ F−1 is the identity
mapping acting from HN

(Ω) into H(Ω)(C
N ).

Our main result in this section is

Theorem 2.2. Let Ω = {ωn}∞n=1 ∈W↑. Then the following assertions are equivalent:
(i) a version of Borel’s extension theorem holds for E(Ω)(R

N );

(ii) for each set B ⊂ HN
(Ω) contained and bounded in Hωn,n(C

N ) for some n ∈ N there

exists an m ∈ N such that B is contained and bounded in Hωm,0(C
N );

(iii) for each n ∈ N there exist m ∈ N and C > 0 such that

sup
z∈CN

|f(z)|
eωm(‖z‖)

6 C sup
z∈CN

|f(z)|
en‖Imz‖+ωn(‖z‖)

for all f ∈ HN
(Ω); (3)

(iv) for each n ∈ N there exist m ∈ N and C > 0 so that

|f(z)| 6 en‖Imz‖+ωn(‖z‖) for all z ∈ C
N , f ∈ HN

(Ω) (4)

imply
|f(z)| 6 C eωm(‖z‖) for all z ∈ C

N . (5)

C (i) ⇔ (ii): By the Surjectivity criterion 26.1 of [9], ρ maps E(Ω)(R
N ) onto E N

(Ω) if and

only if for each bounded set A in
(
E(Ω)(R

N )
)′
b

the set (ρ′)−1(A) is bounded in
(
E N
(Ω)

)′
b
. With

the commutative diagram the first part of the theorem is proved.
(ii) ⇒ (iii): Fix any n ∈ N and set Bn := {f ∈ H(CN ) : ‖f‖ωn,n,N 6 1}. Using (ii) with

B = HN
(Ω) ∩Bn, we deduce that there exist m ∈ N and C > 0 such that

‖g‖ωm,0,N 6 C for all g ∈ HN
(Ω) ∩Bn. (6)

Let f ∈ HN
(Ω) be fixed. If ‖f‖ωn,n,N = 0 or ‖f‖ωn,n,N = ∞, then (3) is trivially true. In case

0 < ‖f‖ωn,n,N <∞ we use (6) with g = f
‖f‖ωn,n,N

. Then we have

‖f‖ωm,0,N 6 C ‖f‖ωn,n,N .

This means that (3) holds.
Implications (iii) ⇒ (iv) ⇒ (ii) are easily checked. B
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3. Sufficient conditions

Throughout last three sections we suppose that Ω = {ωn}∞n=1 ∈W
nq
↑ . We start by

Proposition 3.1. Let Ω = {ωn}∞n=1 ∈W
nq
↑ . Then the space E(Ω)(R

N ) is nonquasianalytic.

That is, there is a function f ∈ E(Ω)(R
N )\{0} such that

f (α)(0) = 0 for all α ∈ N
N
0 .

C First we choose 0 = t0 < t1 < . . . satisfying
∞∫

tn

ωn(t)

t2
dt <

1

n3
for each n ∈ N .

Then we introduce a function

ω(t) =




0 for t ∈ [0, t1),

nωn(t) for t ∈ [tn, tn+1) .

Since we assume that ωn(t) 6 ωn+1(t) for t > 0, it follows that ω is nondecreasing on [0,∞).
Next, ωn(t) = o(ω(t)) as t→∞ and

∞∫

1

ω(t)

t2
dt =

∞∑

n=1

tn+1∫

tn

nωn(t)

t2
dt 6

∞∑

n=1

1

n2
<∞.

By Lemma 3.2 of [2] we find a cotinuous nondecreasing function σ : [0,∞)→ [0,∞) such that

ω(t) = o(σ(t)), t→∞; σ(2t) 6 4σ(t) for all t > 0;
∞∫

1

σ(t)

t2
dt <∞.

Using Proposition 2.3 of [5] for the σ and compact set K = {0}, we construct a function
ϕ ∈ C∞(RN ) with the following properties:

ϕ(x) = 1 for x ∈ [−ε, ε]N ; supp ϕ ⊂ [−3ε, 3ε]N ;

Aϕ,σ :=

∫

RN

|ϕ̂(t)| eσ(‖t‖) dt <∞.

Here ϕ̂(t) =
∫

RN

ϕ(x) e−i〈t,x〉 dx is a Fourier transformation of ϕ.

We wish now to show that ϕ ∈ E(Ω)(R
N ). By the Fourier inversion formula we have

|ϕ(α)(x)| 6

∣∣∣∣∣∣
1

(2π)N

∫

RN

ϕ̂(t) (it)α ei〈t,x〉 dt

∣∣∣∣∣∣
6

1

(2π)N

∫

RN

|ϕ̂(t)| ‖t‖|α| dt 6

6
1

(2π)N

∫

RN

|ϕ̂(t)| eωn(‖t‖) dt · exp sup
t∈RN\{0}

(
|α| log ‖t‖ − ωn(‖t‖)

)
6

6
1

(2π)N

∫

RN

|ϕ̂(t)| eωn(‖t‖) dt · eϕ∗ωn (|α|) .
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Since ωn(t) = o(ω(t)) = o(o(σ(t))) = o(σ(t)) as t→∞, there is an Mn > 0 such that

∫

RN

|ϕ̂(t)| eωn(‖t‖) dt 6
∫

RN

|ϕ̂(t)| eσ(‖t‖)+Mn dt = eMn Aϕ,σ .

Hence,

|ϕ(α)(x)| 6 eMn Aϕ,σ
(2π)N

eϕ
∗
ωn

(|α|) for all α ∈ N
N
0 .

This means that ϕ ∈ E(Ω)(R
N ). Setting f(x) = ϕ(x)− 1 we finally obtain the result. B

To formulate the main result of the section we need some notation. For a nonquasianalytic
function ω we define the function Pω : C

N → R as follows:

Pω(x+ iy) =
1

π

∞∫

−∞

ω(‖x+ ty‖)
t2 + 1

dt for x, y ∈ R
N .

It should be noted that in earlier papers dealt with extension theorems (for instance, in [8]
and [4]) the function Pω was considered for N = 1 only. As is well known, in case N = 1, Pω
is harmonic in the open upper and lower half plane and it is continuous and subharmonic in
the whole plane C. Moreover, ω(|z|) 6 Pω(z) for z ∈ C.

Theorem 3.2. Let Ω = {ωn}∞n=1 ∈W
nq
↑ . Suppose that

(I) for each n ∈ N there exist m ∈ N and C > 0 such that

Pωn(z) 6 ωm(‖z‖) + C for all z ∈ C
N .

Then the operator ρ : E(Ω)(R
N )→ E N

(Ω) is surjective.

C Let us show that condition (iv) of Theorem 2.2 holds. Fix any n ∈ N. Assume that
f ∈ HN

(Ω) satisfies (4). Then there are nf ∈ N and Df > 0 such that

|f(z)| 6 Df e
ωnf (‖z‖) for z ∈ C

N . (7)

Given z = x+ iy ∈ C
N with y 6= 0, we define the entire function

F : C→ C, F (w) := f

(
x+ w

y

‖y‖

)
for w ∈ C.

We can rewrite (7) as

|F (w)| 6 Df e
ωnf (‖x‖+|w|) for all w ∈ C . (8)

Next, since ∥∥∥∥Im
(
x+ w

y

‖y‖

)∥∥∥∥ = | Im w|,

(4) implies that

|F (w)| 6 exp

(
n| Im w|+ ωn

(∥∥∥x+ w
y

‖y‖
∥∥∥
))

for w ∈ C . (9)
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By the Phragmèn–Lindelöf principle (Theorem 6.5.4 in [6]) we find that for u ∈ R, v ∈ R\{0}

log |F (u+ iv)| 6 |v|
π

∞∫

−∞

log |F (t)|
(u− t)2 + v2

dt+ |v|d, (10)

where

d = lim sup
r→∞

2

π

1

r

π∫

0

log
∣∣∣F (reiθ)

∣∣∣ sin θ dθ .

Using (8) we have

2

π

1

r

π∫

0

log
∣∣∣F (reiθ)

∣∣∣ sin θ dθ 6 2

π

1

r

π∫

0

(
logDf + ωnf (‖x‖+ r)

)
sin θ dθ =

=
4

π

( logDf

r
+
ωnf (‖x‖+ r)

r

)
for all r > 0.

Nonquasianalyticity of ωnf gives us that

ωnf (r + ‖x‖)
r + ‖x‖ =

∞∫

r+‖x‖

ωnf (r + ‖x‖)
s2

ds 6

∞∫

r+‖x‖

ωnf (s)

s2
ds→ 0 as r →∞ .

By the above this means that d 6 0. Now, using (9) in (10) and (I), we have

log |F (u+ iv)| 6 |v|
π

∞∫

−∞

ωn(‖x+ t y
‖y‖‖)

(u− t)2 + v2
dt =

=
1

π

∞∫

−∞

ωn(‖x+ (u+ vt) y
‖y‖‖)

t2 + 1
dt =

1

π

∞∫

−∞

ωn(‖(x+ u y
‖y‖) + tv y

‖y‖‖)
t2 + 1

dt =

= Pωn

((
x+ u

y

‖y‖
)
+ iv

y

‖y‖
)
6 ωm

(∥∥∥
(
x+ u

y

‖y‖
)
+ iv

y

‖y‖
∥∥∥
)
+ C .

Setting u = 0, v = ‖y‖ we get

log |f(x+ iy)| = log |F (i‖y‖)| 6 ωm(‖x+ iy‖) + C.

Thus,
|f(z)| 6 eC eωm(‖z‖) for all z ∈ C

N with Im z 6= 0 .

By continuity this inequality holds for all z ∈ C
N . Theorem 3.2 is thus completely proved. B

Corollary 3.3. Suppose that Ω = {ωn}∞n=1 ∈W
nq
↑ satisfies

(II)





(II1) for each n ∈ N there exist m ∈ N and C > 0 such that

ωn(2t) 6 ωm(t) + C for all t > 0 ;

(II2) for each n ∈ N there exist m ∈ N and C > 0 such that

4

π

∞∫

1

ωn(yt)

t2 + 1
dt 6 ωm(y) + C for all y > 0 .

Then E(Ω)(R
N ) admits a version of Borel’s extension theorem for all N ∈ N.
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C Fix any n ∈ N and find m1 > n and D1 > 0 such that

4

π

∞∫

1

ωn(yt)

t2 + 1
dt 6 ωm1(y) +D1 for y > 0 . (11)

Next, for the m1 there exist m ∈ N and D2 > 0 such that

ωm1(2t) 6 ωm(t) +D2 for t > 0 . (12)

Combining (11) and (12), we have for all z = x+ iy ∈ C
N

Pωn(z) =
1

π

∞∫

−∞

ωn(‖x+ ty‖)
t2 + 1

dt 6
2

π

∞∫

0

ωn(‖x‖+ t‖y‖)
t2 + 1

dt 6

6
1

2
ωn(‖x‖+ ‖y‖) +

2

π

∞∫

1

ωn
(
(‖x‖+ ‖y‖)t

)

t2 + 1
dt 6

6
1

2
ωn(‖x‖+ ‖y‖) +

1

2
ωm1(‖x‖+ ‖y‖) +D1 6

6 ωm1(‖x‖+ ‖y‖) +D1 6 ωm1(2max{‖x‖, ‖y‖}) +D1 6

6 ωm(max{‖x‖, ‖y‖}) +D1 +D2 6 ωm(‖z‖) + C,

where C := D1+D2. This means that condition (I) of Theorem 3.2 holds. So ρ maps E(Ω)(R
N )

onto E N
(Ω). B

Remark. Let us explain how results of [8] and [4] for spaces of ultradifferentiable functions
(UDF) of minimal and normal type can be derived from the present results. First recall that
condition

(I′) for each n ∈ N there exist m ∈ N and C > 0 such that

Pωn(z) 6 ωm(|z|) + C for all z ∈ C

provides that Borel’s extension theorem holds for the corresponding class E(Ω)(R
N ) of minimal

or normal type independently of the number N of variables.
In case of spaces of minimal type (see [8]), (II1) means that ω(2t) = O(ω(t)), t → ∞.

That was the general assumption of [8]. It is not hard to see that (II2)⇔ (I′) in this situation.
Indeed, in the proof of Corollary 3.3 we just have proved that under assumption (II1), (II2)
implies (I), and so (I′). Implication (I′) ⇒ (II2) follows from

4

π

∞∫

1

ωn(yt)

t2 + 1
dt 6

4

π

∞∫

0

ωn(yt)

t2 + 1
dt = 2Pωn(iy) 6 2ωm(y) + 2C =

= 2mω(y) + 2C = ω2m(y) + 2C for y > 0 .

In case of spaces of normal type, in Lemmas 2.5 and 2.7 of [4] it was shown that (II1)⇒ (II2)
and (II1) ⇔ (I′). So (II) ⇔ (II1) ⇔ (I′).

4. Necessary conditions

Assume that Ω = {ωn}∞n=1 ∈W
nq
↑ satisfies the additional condition

(A) for each n ∈ N there are m ∈ N and An > 0 so that

ωn(x+ y) 6 ωm(x) + ωm(y) +An for x, y > 0 . (13)
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Note that analogous assumption was also made in [4] for spaces of normal type (see
Definition 6.1 of [4]). In case of spaces of minimal type, (13) is a simple consequence of
the general assumption ω(2t) = O(ω(t)), t→∞.

We start by several lemmas.

Lemma 4.1. Suppose that Ω = {ωn}∞n=1 ∈ W
nq
↑ has property (A). For each n ∈ N there

exists an m ∈ N such that for every ε > 0 we can find a C > 0 with

Pωn(z) 6 ε| Im z|+ ωm(|Re z|) + C for z ∈ C. (14)

C Fix any n ∈ N and find m ∈ N and An > 0 so that (13) holds. Next, for an arbitrary
ε > 0 choose r > 0 with

2

π

∞∫

r

ωm(t)

t2 + 1
dt < ε .

We have for x > 0 and y > 0

Pωn(x+ iy) =
y

π

∞∫

−∞

ωn(|x+ t|)
t2 + y2

dt 6
2y

π

∞∫

0

ωm(x) + ωm(t) +An
t2 + y2

dt = ωm(x) + Im(y) +An,

where Im(y) :=
2y

π

∞∫

0

ωm(t)

t2 + y2
dt. If y 6 1, then

Im(y) =
2

π

∞∫

0

ωm(yt)

t2 + 1
dt 6

2

π

∞∫

0

ωm(t)

t2 + 1
dt =: Dm <∞ .

If y > 1, then

Im(y) =
2y

π

r∫

0

ωm(t)

t2 + y2
dt+

2y

π

∞∫

r

ωm(t)

t2 + y2
dt 6

2

π

r/y∫

0

ωm(yt)

t2 + 1
dt+

2y

π

∞∫

r

ωm(t)

t2 + 1
dt 6 ωm(r)+εy .

Hence,
Im(y) 6 εy + ωm(r) +Dm for all y > 0,

and so,
Pωn(x+ iy) 6 ωm(x) + εy + C for x > 0, y > 0,

where C := ωm(r) +Dm + An. By continuity the preceding inequality holds also for y = 0.
Since

Pωn(x+ iy) = Pωn(x− iy) = Pωn(−x+ iy),

we finally obtain the result. B

Lemma 4.2. If Ω = {ωn}∞n=1 ∈ W
nq
↑ has property (A), then for each n ∈ N we can find

an Rn > 0 such that for every R > Rn there exists an r > 0 for which

Pωn(iR) 6
2R

π

r∫

0

ωn+1(t)

t2 +R2
dt . (15)
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C Use of (1) gives that

Pωn(iR) 6
2R

π

∞∫

0

ωn+1(t)

t2 +R2
dt− logR+ Cn =

2R

π

r∫

0

ωn+1(t)

t2 +R2
dt+ Lr,R, (16)

where

Lr,R :=
2R

π

∞∫

r

ωn+1(t)

t2 +R2
dt− logR+ Cn .

Put Rn := eCn+1. Given R > Rn choose r > 0 such that

2R

π

∞∫

r

ωn+1(t)

t2 +R2
dt < 1 .

Then Lr,R < 1− logRn + Cn = 0. Use of this in (16) gives (15). B

In the next lemma we construct a special family of polynomials. Let us first introduce two
new functions. For k ∈ N and r > 0 we put

ωrk(t) :=




ωk(t) for t ∈ [0, r]

r(ωk)
′
−(r) log

t
r + ωk(r) for t ∈ (r,∞)

and

Pωr
k
(x+ iy) :=





|y|
π

∞∫

−∞

ωrk(|t|)
(t− x)2 + y2

dt for y 6= 0

ωrk(|x|) for y = 0

(x+ iy ∈ C)

Pωr
k

has the same properties that Pω, i. e. Pωr
k

is harmonic in the open upper and lower half
plane and it is continuous and subharmonic in the whole plane.

Lemma 4.3. Suppose that Ω = {ωn}∞n=1 ∈ Wnq
↑ satisfies (A). There exists a family

of polynomials {gR,n(ζ) : n ∈ N, R ∈ [Rn,∞)} of one variable ζ ∈ C with the following
properties:

1) for each n ∈ N and each R > Rn

gR,n(iR) > expPωn(iR); (17)

2) for each n ∈ N there exist m ∈ N and C > 0 such that

|gR,n(ζ)| 6 C exp
(
m| Im ζ|+ ωm(|ζ|)

)
for all R ∈ [Rn,∞) and ζ ∈ C . (18)

C Given n ∈ N we find an Rn > 0 according to Lemma 4.2. Next we fix any R > Rn and
find r > 0 such that (15) holds. Then

Pωn(iR) 6
2R

π

r∫

0

ωn+1(t)

t2 +R2
dt =

2R

π

r∫

0

ωrn+1(t)

t2 +R2
dt 6 Pωrn+1

(iR) . (19)

Applying Lemma 1 of [1] to the subharmonic function Pωrn+1
(z) and the point ξ = iR, we

construct an entire function gR,n(ζ), ζ ∈ C, for which

gR,n(iR) = expPωrn+1
(iR), (20)
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|gR,n(ζ)| 6 A(1 + |ζ|2)2 expP 1
ωrn+1

(ζ) for all ζ ∈ C. (21)

Here A is an absolute constant and P 1
ωrn+1

(ζ) := sup
{
Pωrn+1

(ζ + w) : |w| 6 1
}

. Combining

(20) and (19), we immediately derive (17).
In order to show that (18) holds, we estimate P 1

ωrn+1
(ζ). Since ωrn+1(t) 6 ωn+1(t) it follows

that Pωrn+1
(ζ) 6 Pωn+1(ζ), and so, P 1

ωrn+1
(ζ) 6 P 1

ωn+1
(ζ) for all ζ ∈ C.

Next, by Lemma 4.1, there are k ∈ N and D1 > 0 such that

Pωn+1(z) 6 k| Im z|+ ωk(|z|) +D1 for z ∈ C .

In [3] it was proved (see inequality (5) of [3]) that

ωk(t+ 1) 6 ωk(t) +Bke
2 for all t > 0,

where Bk is determined by (2). Thus,

P 1
ωrn+1

(ζ) 6 P 1
ωn+1

(ζ) 6 k| Im ζ|+ ωk(|ζ|+ 1) + k +D1 6 k| Im ζ|+ ωk(|ζ|) +D,

where D := Bke
2 + k +D1.

It is easily checked that

(1 + |ζ|2)2 6 e4 log(|ζ|+1) for ζ ∈ C .

Now we can continue (21) as follows

|gR,n(ζ)| 6 A exp
(
k| Im ζ|+ 4 log(|ζ|+ 1) + ωk(|ζ|) +D

)
.

Setting m = k + 4 and C = A exp(Ck + Ck+1 + Ck+2 + Ck+3 +D), we finally obtain (18).
Proof of the fact that gR,n are polynomials is the same as in Lemma 2 of [1], so we omit

it. Our result is thus completely proved. B

The main result of the section is

Theorem 4.4. Let Ω = {ωn}∞n=1 be a weight sequence in W nq
↑ with property (A). If

E(Ω)(R
N ) admits a version of Borel’s extension theorem for at least one N ∈ N, then

(III) for each n ∈ N there exist m ∈ N and C > 0 so that

Pωn(iy) 6 ωm(y) + C for all y > 0 . (22)

C First note that if ρ : E(Ω)(R
N ) → E N

(Ω) is surjective for some N > 2, then it is also
surjective for N = 1.

Assume that there is an n0 ∈ N such that for each m ∈ N and each k ∈ N there exists an
Rm,k > Rn0 such that

Pωn0
(iRm,k) > ωm(Rm,k) + k . (23)

Here Rn0 is determined by Lemma 4.2.
Let {gR,n(ζ) : n ∈ N, R ∈ [Rn,∞)} be a family of polynomials with properties of

Lemma 4.3. Then there are n1 ∈ N and D1 > 0 such that

|gr,n0(ζ)| 6 D1 exp
(
n1| Im ζ|+ ωn1(|ζ|)

)
for all ζ ∈ C .

Setting fm,k :=
1

D1
gRm,k,n0 , we can rewrite the previous inequality as

|fm,k(ζ)| 6 exp
(
n1| Im ζ|+ ωn1(|ζ|)

)
for all ζ ∈ C . (24)
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Next, from (17) with n = n0 and (23) we have for all m, k ∈ N

fm,k(iRm,k) =
1

D1
gRm,k,n0(iRm,k) >

1

D1
expPωn0

(iRm,k) >
k

D1
expωm(Rm,k) . (25)

Being polynomials fm,k are in H1
(Ω). From (24) and (25) it then follows that assertion (iv)

of Theorem 2.2 is false. Thus, the operator ρ : E(Ω)(R) → E 1
(Ω) is not surjective. This

contradiction proves the theorem. B

Remark. It should be noted that Theorem 4.4 gives us the corresponding necessary
conditions of [8] and [4] for spaces of UDF of minimal and normal type. Moreover, in these
two cases condition (II) of Corollary 3.3 is equivalent to condition (III) of the previuos theorem
(see [4, 8]). This means that whole criteria of [8] and [4] can be derived from our present results.

5. Examples

One of the classical nonquasianalytic weight functions is ω(t) = tα, 0 < α < 1. It was
shown in [8] that space of UDF of minimal type defined by this function admits the analog
of Borel’s extension theorem. In contrast, the corresponding space of normal type does not
admit this analog (see [4]). Let us consider

Example 5.1. ωn(t) = tαn , 0 < αn ↑ α 6 1.
We should like to verify condition (II) of Corollary 3.3. It is easily seen that (II1) holds.

Next, for n ∈ N and y > 0 we have

4

π

∞∫

1

ωn(yt)

t2 + 1
dt = yαn

4

π

∞∫

1

tαn

t2 + 1
dt 6 yαn

4

π

∞∫

1

tαn−2 dt = yαn
4

π(1− αn)
.

Obviuosly, we can find a C > 0 such that

yαn
4

π(1− αn)
6 yαn+1 + C for all y > 0 .

This means that (II2) also holds. Thus the space E(Ω)(R
N ) with Ω = {tαn}∞n=1 admits a

version of Borel’s theorem for all N ∈ N.
It is of particular interest that αn could tend to 1, whereas ω(t) = t is not a nonquasi-

analytic weight function.
Another well-known weight function is ω(t) = t

logβ(e+t)
, where β > 1. Recall (see [8] and

[4]) that Borel’s theorem does not hold for the corresponding spaces of UDF, both of minimal
and normal type. Now we wish to consider a sequence of such functions.

Example 5.2. ωn(t) =
t

logβn (e+t)
, βn ↓ β > 1.

Without loss of generality we can assume that β1 < β + 1. First note that Ω = {ωn}∞n=1

satisfies condition (II1), and so, condition (A). Now, let us show that condition (III) of
Theorem 4.4 does not hold. For y > 0 we have

Pωn(iy) =
2

π

∞∫

0

ωn(yt)

t2 + 1
dt =

y

π

∞∫

0

d(log(t2 + 1))

logβn(e+ yt)
= y2

βn
π

∞∫

0

log(t2 + 1)

logβn+1(e+ yt)

dt

e+ yt
.

Put

ty :=
y +

√
y2 + 4(e− 1)

2
.
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Then t2 + 1 > e+ yt for t > ty. Hence, for an arbitrary m ∈ N we can write

Pωn(iy) > y
2 βn
π

∞∫

ty

1

logβn(e+ yt)

dt

e+ yt
=

βn
π(βn − 1)

y

logβn−1(e+ yty)
=

= ωm(y)
βn

π(βn − 1)

logβm(e+ y)

logβn−1(e+ yty)
.

Since βm > β > βn − 1, the quotient
logβm(e+ y)

logβn−1(e+ yty)
tends to ∞ as y → ∞, and so, (III)

does not hold. By theorem 4.4 we derive that ρ : E(Ω)(R
N )→ E N

(Ω) is not surjective.
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