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CYCLICALLY COMPACT OPERATORS
IN BANACH SPACES

A. G. Kusraev

The Boolean-valued interpretation of compactness gives rise to the new notions of cyclically
compact sets and operators which deserves an independent study. A part of the corresponding
theory is presented in this work. General form of cyclically compact operators in Kaplansky—
Hilbert module as well as a variant of Fredholm Alternative for cyclically compact operators

are also given.

1. Preliminaries

In this section we present briefly some basic facts about Boolean-valued repre-
sentations which we need in the sequel.

1.1. Let B be a complete Boolean algebra and let A be a nonempty set. Recall
(see [3]) that B(A) denotes the set of all partitions of unity in B with the fixed
index set A. More precicely, assign

B(A):= {y :A— B: (Ya,B € A) (a# B — via) Av(B) =0)
AL ) = 1}.

If A is an ordered set then we may order the set B(A) as well:

v < pe (Va,BeA) (v@) Ap(B)#0—a<B) (v,pue B(A)).

It is easy to show that this relation is actually a partial order in B(A). If A is
directed upward (downward) then so does B(A). Let @ be the Stone space of
the algebra B. Identifying an element v(«) with a clopen subset of ), we construct
the mapping v : Q, — A, Q, := U{V(a) D€ A}, by letting 7(q) = o whenever
q € v(a). Thus, 7 is a step-function that takes the value o on v(a). Moreover,
v<p— (YgeQ,n Qu) (7(g) < ilq))-
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1.2. Let X be a normed space. Suppose that £(X) has a complete Boolean
algebra of norm one projections B which is isomorphic to B. In this event we
will identify the Boolean algebras B and B, writing B C L£(X). Say that X is
a normed B-space if B C L(X) and for every partition of unity (b¢)eez in B the
two conditions hold:

(1) If bez = 0 (£ € E) for some x € X then x = 0;

(2) If bexw = bewe (£ € E) for z € X and a family (z¢)eez in X then ||z|| <
sup{||bgzel| : € € 2}

Conditions (1) and (2) amount to the respective conditions (1’) and (2):

(1") To each x € X there corresponds the greatest projection b € B such that
bx = 0;

(2") If z, (z¢), and (be) are the same as in (2) then ||z|| = sup{||bex¢]| : £ € E}.

From (2) it follows in particular that

zn: bk.T
k=1

for x € X and pairwise disjoint projections by,...,b, in B.

Given a partition of unity (b¢), we refer to z € X satisfying the condition
(V& € E) bex = bexg as a mizing of (z¢) by (be). If (1) holds then there is a unique
mixing z of (x¢) by (be). In these circumstances we naturally call x the mizing of
(x¢) by (be). Condition (2) maybe paraphrased as follows: The unit ball Ux of X
is closed under mixing or is mix-complete.

— b
k;f%,afin” k||

1.3. Consider a normed B-space X and a net (z4)aca in it. For every v €
B(A) put x,:= mix 4ea(v(a)zy). If all the mixings exist then we come to a new
net (2,),ep(a) in X. Every subnet of the net (z,),ep(a) is called a cyclical subnet
of the original net (24)aeca. If s: A — X and » : A’ — B(A) then the mapping
sesx: A" — X is defined by s e s(a):= x, where v = s(a). A cyclical subsequence
of a sequence (zx)reny C X is a sequence of the form (z,, )keny where (vg)ren is
a sequence in B(N) with v < vgyq for all k € N.

1.4. Let A be the bounded part of the universally complete K-space Cl, i. e.
A is the order-dense ideal in C| generated by the order-unity 1:= 1" € C|. Take a
Banach space X inside V(B). Denote (see [1])

X)%={x € X|: |z| € A}.
Then X|*° is a Banach-Kantorovich space called the bounded descent of X. Since

A is an order complete AM-space with unity, X'}°° is a Banach space with mixed
norm over A. If ) is another Banach space and 7 : X — ) is a bounded linear
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operator inside V(B) with |7]| € A then the bounded descent of T is the restriction
of T] to X|*°. Clearly, the bounded descent of 7 is a bounded linear operator
from X|*° to Y|°°.

1.5. A normed B-space X is B-cyclic if we may find in X a mixing of each
norm-bounded family by any partition of unity in B.

Theorem. A Banach space X is linearly isometric to the bounded descent of
some Banach space inside VB if and only if X is B-cyclic.

According to above theorem there is no loss of generality in assuming that
X is a decomposable subspace of the Banach—Kantorovich space X' |, where X is
a Banach space inside V() and every projection b € B coincides with the restriction
of x(b) onto X. More precisely, we will assume that X is the bounded descent of
X,ie, X = {x € X|: |z| € A}, where A is the Stone algebra S(B) identified
with the bounded part of the complex algebra C|. In this event a subset C' C X is
mix-complete if and only if C' = C1.

1.6. Given a sequence o : N* — C1 and » : N* — N, the composite o | o]
is a cyclical subsequence of the sequence o] : N — C if and only if [0 o s is
a subsequence of 0] = 1. Given a sequence s : N — C and » : N — B(N), the
composite sT o »" is a subsequence of the sequence o1 : N* — C1 inside V(B) if
and only if s e 3 is a cyclical subsequence of the sequence s.

2. Cyclically compact sets and operators

In this section we introduce cyclically compact sets and operators and consider
some of their properties.

2.1. A subset C' € X is said to be cyclically compact if C' is mix-complete (see
1.5) and every sequence in C' has a cyclic subsequence that converges (in norm)
to some element of C'. A subset in X is called relatively cyclically compact if it is
contained in a cyclically compact set.

A set C' C X is cyclically compact (relatively cyclically compact) if and only
if C1 is compact (relatively compact) in X.

< It suffices to prove the claim about cyclical compactness. In view of [1;
Theorem 5.4.2] we may assume that X = X |. Suppose that [C'1 is compact
] = 1. Take an arbitrary sequence s : N — C. Then [sT: N* — C1 is a sequence
in C1] = 1. By assumption C'1 is compact inside VB 5o that there exist
p,x € VB with [p is a subsequence of s1] = [z € C1] = [lim(p) = =] = 1.
Since C' is mix-complete, we obtain that pJ is a cyclical subsequence of s and lim
(p }) = =z € C. Conversely, suppose that C is a cyclically compact set. Take
a sequence o : N* — (7 in . By assumption the sequence o] : N — C' has a cyclic
subsequence p : B(N) — C converging to some z € C. It remains to observe that
[ pT is a subsequence of the sequence o] =1 and [lim(pT) =z]=1. >
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2.2. Theorem. A mix-complete set C' in a Banach B-space X is relatively
cyclically compact if and only if for every € > 0 there exist a countable partition
of unity (m,) in the Boolean algebra B(X) and a sequence (0,) of finite subsets
0n, C C such that the set m, (mix (6,,)) is an e-net for m,, (C) for all n € N. The last
means that if

0= {«Tn,la ) xn,l(n)}

then for every x € m, (C') there exists a partition of unity {pn.1,..., pn,in)} in B(X)
with
I(n)
xz <:>Z TnPn,kTn, k
k=1

<e.

< According to 1.5 we may assume that X := X| for some Banach space X
inside VB). By 2.1 a set C' C X is relatively cyclically compact if and only if [Ct
is relatively compact | = 1. By applying the Hausdorff Criterion to C1 inside VB,
we obtain that relative cyclical compactness of C1 is equivalent to [ C1 is totally
bo(ur)lded]] = 1 or, what amounts to the same, the following formula is valid inside
VB,

M<eeRY)(IneN)(3f:n— X)(VzeCT)(Tk €n)

(lz =f R < ).

Writing out Boolean truth values for the quantifiers, we see that the last claim
can be stated in the following equivalent form: for every 0 < ¢ € R there exist
a countable partition of unity (b,) in B and a sequence (f,) of elements of V(&)
such that [ f, : n* — X' ] > b, and

[(vz € CT) Bk e n®)(lz & fu(k)] <€) ] = bn.

Substitute f,, for mix (by, fn, b%gn), where g, is an element of VB with [g, : n* —
X ] = 1. Then f, meets the above properties and obeys the additional requirement
[ fn:n" — X]=1. Denote h,:= f,]. So, the above implies that for every z € C
holds

VAlllz hn (k)| <] k €n} > by

Let x : B — B(X) be the isomorphism from 1.5 and put m := x(bg). If by, s :=
[z <h, (k)| <e"] and 2’ := Zz;éj(bn,k)hn(k) then [ ||z’ <z| <e*] =1, or
equivalently |7, (z <z')| < 1. Thus, putting 6,, := {h,(0),...,h,(n 1)}, we
obtain the desired sequence 6,, of finite subsets of C'. >

2.3. Denote by Lp(X,Y) the set of all bounded B-linear operators from X to
Y. In this event W:= Lp(X,Y) is a Banach space and B C W. If Y is B-cyclic
then so is W. A projection b € B acts in W by the rule T — boT (T € W). We
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call X# := Lp(X,A) the B-dual of X. For every f € X# define a seminorm py
on X by pf:z — ||f(2)||oc (z € X). Denote by 0. (X, X#) the topology in X
generated by the family of seminorms {py : f € X*}.

A mix-complete convex set C C X is cyclically 0., (X, X#)-compact if and
only if C1 is o (X, X*)-compact inside V(B),

< The algebraic part of the claim is easy. Let the formula (A, u) formalize
the sentence: u belongs to the weak closure of A. Then the formula can be written
as

(Vn € N) (V0 € Pgn(X)) (Fv € A) (Vy €0) |(z]y)| <nt,

where w is the set of naturals, (-|-) is the inner product in X', and Pgy(X') is the
set of all finite subsets of X. Suppose that [¢(A,u)] = 1. Observe that

Pﬁn(XT) = {QT: 0 c Pﬁn(X)}T

Using the Maximum Principle and the above relation, we may calculate Boolean
truth values and arrive at the following assertion: For any n € w and any finite
collections 6:= {y1,...,ym} in X7, there exists v € A} such that

[(Vy € 0") |(usv|y)| <1/n"] =1.

Moreover, we may choose v so that the extra condition [||v|| < |u|] = 1 holds.
Therefore,

lv] < |u|, ((uev)|w)|<n™t1 (k:=1,....n;1:=1,...,m).

There exists a fixed partition of unity (e¢)¢ez C B which depends only on « and
is such that e¢|u| € A for all £&. From here it is seen that ecu € A and ecv € A.
Moreover,

[{ee(uev) |y lo <n™' (k:=1,...,n;1:=1,...,m).

Repeating the above argument in the opposite direction, we come to the following
conclusion: The formula (A, u) is true inside V(5) if and only if there exist a
partition of unity (e¢)eez in B and a family (ug)eez such that ue belongs to the
0so-closure of A and u = mix (egug).

Now, assume that A is o-closed and the formula (A, v) is true inside V(B),
Then ug is contained in A by assumption and Jug € A] = 1. Hence e¢ < [u € A]
for all €, i.e., [u € A] = 1. Therefore,

VB = (Vu e L(X)Y(A, u) = ue A
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Conversely, assume A to be weakly closed. If u belongs to the o.,-closure of A,
then u is contained in the weak closure of A. >

2.4. Consider X##:= (X#)*:= Lp(X*,A), the second B-dual of X. Given
z € X and f € X#, put 2##:= (x) where «(x) : f — f(x). Undoubtedly,
v(xz) € L(X*,A). In addition,

|27#] = |o(2)| = sup{lu(z) ()] : /] <1}
= sup{|f(z)]: (Vo € X)|f(2)| < |z[} = sup{|f(z)]: f € O(-D}=]z]

Thus, t(z) € X## for every x € X. It is evident that the operator + : X — X##,
defined as ¢ : & +— (), is linear and isometric. The operator ¢ is referred to as the
canonical embedding of X into the second B-dual. As in the case of Banach spaces,
it is convenient to treat x and x##:= 1z as the same element and consider X as
a subspace of X##. A B-normed space X is said to be B-reflerive if X and X##
coincide under the indicated embedding ¢.

Theorem. A normed B-space is B-reflexive if and only if its unit ball is cycli-
cally 000 (X, X#)-compact.

<! The Kakutani Criterion claims that a normed space is reflexive if and only
if its unit ball is weakly compact. Hence, the result follows from 2.3. >

2.5. Let X and Y be normed B-spaces. An operator T' € Lp(X,Y), is called
cyclically compact (in symbols, T € Kp(X,Y)) if the image T(C') of any bounded
subset C' C X is relatively cyclically compact in Y. It is easy to see that Kp(X,Y)
is a decomposable subspace of the Banach—Kantorovich space Lp(X,Y).

Let X and Y be Boolean-valued representations of X and Y. Recall that the
immersion mapping 1" — T~ of the operators is a linear isometric embedding of the
lattice-normed spaces Lp(X,Y) into £LB(X,Y)], see [1; Theorem 5.5.9]. Assume
that Y is a B-cyclic space.

(1) A bounded operator T from X into Y is cyclically compact if and only if
[T~ is a compact operator from X into Y] = 1.
< Observe that C' is bounded in X if and only if [C™ is bounded in X' ] = 1.

Moreover, according to [1: 3.4.14],
VB =T(C)~ =T~(C™).

It remains to apply 2.1. >

(2) Kp(X,Y) is a bo-closed decomposable subspace in Lg(X,Y).

A Let X and Y € V(B) be the same as above and let (B) (X, ) be the space of
compact operators from X into Y inside V(B). As was shown in [1; Theorem 5.9.9
the mapping T — T is an isometric embedding of Lp(X,Y) into LB)(X,Y)].
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It follows from (1) that this embedding maps the subspace Kp(X,Y) onto the
bounded part of K£(B) (X, Y)]. Taking into consideration the ZFC-theorem claiming
the closure of the subspace of compact operators, we have [ /C(B) (X, ) is a closed
subspace in

LB (X, )] =1.

From this we deduce that K®B)(X,)) | is bo-closed and decomposable in
LPB)(x,Y)]. Thus, the bounded part of K(B)(X,Y)| is also bo-closed and de-
composable. >

(3) Let T € Lp(X,Y)and S € Lp(Y,Z). Ifeither T or S is cyclically compact
then S o T is also cyclically compact.

<1 We need only to immerse the composite S o T inside V() and, taking into
account (1) and [1; 3.4.14], apply therein the ZFC-theorem about compactness
of the composite of a bounded operator and a compact operator. The subsequent
descent leads immediately to the desired result. >

(4) A bounded operator T is cyclically compact if and only if its adjoint T™ is
cyclically compact.

<1 Apply the above procedure, immersion into a Boolean-valued model and the
subsequent descent. Observe that the operator (7)™ is the adjoint of T inside
V(B) and use the corresponding ZFC-theorem on compactness of the adjoint of a
compact operator. >

3. Cyclically compact operators in Kaplansky—Hilbert modules

Now we consider general form of cyclically compact operators in Kaplansky—
Hilbert modules.

3.1. Let A be a Stone algebra and consider a unitary A-module X. The
mapping (-|-) : X x X — A is a A-valued inner product, if for all xz,y,z € X and
a € A the following are satisfied:

(1) (z|z) > 0; (z]|z) =0z =0;
(2) (z]y) = (y|z)™;
(3) (az|y) = a(z|y);

(4) (z+ylz) = (z|2) +(y|2).

Using a A-valued inner product, we may introduce the norm in X by the
formula

(8) llzll:= vI[{zlz)]| (= € X),
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and the vector norm
(6) |z|:= /(z]z) (z € X).

3.2. Let X be a A-module with an inner product (-|-) : X x X — A. If X
is complete with respect to the mixed norm |||, it is called a C*-module over A.
A Kaplansky—Hilbert module or an AW™*-module over A is a unitary C*-module
over A that enjoys the following two properties:

(1) let = be an arbitrary element in X, and let (e¢)¢cz be a partition of unity
in P(A) with egz = 0 for all { € E; then z = 0;

(2) let (z¢)eez be a norm-bounded family in X, and let (e¢)eez be a partition
of unity in B(A); then there exists an element z € X such that e;z = egxe for all
£ ek

The element of (2) is the bo-sum of the family (egz¢)ee=. According to the
Cauchy—Bunyakovskii-Schwarz inequality (x|y) < |z||y| the inner product is bo-
continuous in each variable. In particular,

If X is a C*-module than the pair (X, ||-||) is a B-cyclic Banach space if and
only if (X,]-]) is a Banach-Kantorovich space over A := S(B), see [1; Theorem
6.2.7].

3.4. Theorem. The bounded descent of an arbitrary Hilbert space in V(B)
is a Kaplansky—Hilbert module over the Stone algebra S(B). Conversely, if X is
a Kaplansky-Hilbert module over S(B), then there is a Hilbert space X in V(B)
whose bounded descent is unitarily equivalent with X. This space is unique to
within unitary equivalence inside V(B)

< The proof can be found in [1; Theorem 6.2.8] >

3.5. Theorem. Let T in Kg(X,Y) be a cyclically compact operator from
a Kaplansky—Hilbert module X to a Kaplansky—Hilbert module Y. There are
orthonormal families (eg)gen in X, (fx)ken in Y, and a family (ug)ren in A such
that the following hold:

(1) prr1 < pg (B € N) and o-limg_ o g, = 0;

(2) there exists a projection oo in A such that mopy is a weak order-unity in
Too\ for all k € N;

(3) there exists a partition (7)., of the projection w+ such that mou; = 0,
m < [px], and Tppre =0, kK €N;

(4) the representation is valid

0o 0o n
T = meo'z /ﬁkef ® fr + bO‘Z Tn, Z N/ket ® fk-
k=1

n=1 k=1
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< By virtue of 3.4 we may assume that X and Y coincide with the bounded
descents of Hilbert spaces X and )Y, respectively. The operator T:=T1: X — )
is compact and we may apply inside V(B the ZFC-theorem on the general form
of a compact operator in Hilbert space. Working inside V(B) we may choose or-
thonormal sequences (e)gen in X, (fx)ken in YV, and a decreasing numeric sequence
(1 )ken in Ry \ 0 such that lim p; = 0 and the presentation holds:

T= Zukez ® fk-

k=1

Moreover, either (Vk € N) g > 0 or (3k € N)pup, = 0. Since [p1 < ||T]|] = 1 we
have py < |T| € A, whence (ur) C A. Let moo := [T be an infinite-rank compact
operator from a Hilbert space X to a Hilbert space Y] = 1. If pj := moopus then
[wg, > 0] = [ay, > w1 ] = [limpy, = 0] = 7, so that py is a weak order-unity
in Too A, gy, > piy,,q, and o-lim py, = 0. From the above-indicated presentation for
T we deduce

oo
TooT = bo—z prer @ fr.
k=1

Consider the fragment 7= T'. From the definition of 7, it follows that 7% = [T
is a finite-rank operator | = 1. The operator T has finite rank if and only if p,, =0
for some n € N. Thus,

Wi‘o:[[(ﬂnENA)un:()]]: V[[ano]]'

Put pp := [pn = 0], 7o := p1, Tn := pnt+1 <pn, (n € N). Since m, = [pnt1 =
0& py, # 0], we have construct a countable partition ()%, of the projection %

with 7, pn+1 = 0. Therefore, 7, T = 22:1 Wnukef ® fx for all n € N. It remains
to observe that T' = moo T + bo-> - mp,T. >

4. Fredholm B-alternative

A variant of the Fredholm Alternative holds for cyclically compact operators.
We will call it the Fredholm B-Alternative.

4.1. Let X be a Banach space with the dual X*. Take a bounded operator
T : X — X and consider the equation of the first kind

Te=y (2,y€X)



Cyclically Compact Operators in Banach Spaces 1-19

and the conjugate equation
T*y* — r* (.T*,y* € X*)

The corresponding homogeneous equations are defined as Tx = 0 and T*y* = 0.
Let oo(T), ¢1(n,T), @2(n,T), and ¢3z(n,T) be set-theoretic formulas formalizing
the following statements.

©o(T): The homogeneous equation Tz = 0 has a sole solution, zero. The ho-
mogeneous conjugate equation T*y* = 0 has a sole solution, zero. The equation
Tz = y is solvable and has a unique solution given an arbitrary right side. The con-
jugate equation T*y* = x* is solvable and has a unique solution given an arbitrary
right side.

¢1(n,T): The homogeneous equation Tx = 0 has n linearly independent so-
lutions x1,...,z,. The homogeneous conjugate equation 7*y* = 0 has n linearly
independent solutions y7,...,y,.

@2(n,T): The equation Tz = y is solvable if and only if yi(y) =--- =y’ (y) =
0. The conjugate equation T*y* = x* is solvable if and only if z*(z;) = --- =
x*(xy) = 0.

@3(n,T): The general solution z of the equation Tz = y is the sum of a partic-
ular solution xy and the general solution of the homogeneous equation; i.e., it has
the form

.I':JJ()-FZ ATk ()\kG(C)
k=1

The general solution y* of the conjugate equation T*y* = x* is the sum of a partic-
ular solution y; and the general solution of the homogeneous equation; i.e., it has
the form

n
v =ys+ > myr (uk €C).
k=1

Using this notation, the Fredholm Alternative can be written as follows (see

[4]):
wo(T) V (In € N) o1 (n,T) & pa(n, T) & p3(n, T).

Thus, the conventional Fredholm Alternative distinguishes the cases n = 0 and
n # 0. (If n = 0 then the formula

Qol(n7 T) & P2 (TL, T) & 903(n7 T)

is equivalent to ¢o(T).)

4.2. Consider now a B-cyclic Banach space X and a bounded B-linear operator
T in X. In this case X and X# are modules over the Stone algebra A:= S(B) and
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T is A-linear (= module homomorphism). A subset & C X is said to be locally
linearly independent if whenever eq,...,e, € £, A\1,..., A\, € C, and 7 € B with
m(Ae1 + -+ Apen) = 0 we have mAger, = 0 for all k:=1,...,n. We say that
the Fredholm B-Alternative is valid for an operator T if there exists a countable
partition of unity (b,) in B such that the following conditions are fulfilled:

(1) The homogeneous equation by o T = 0 has a sole solution, zero. The
homogeneous conjugate equation by o T#y#* = 0 has a sole solution, zero. The
equation by o T'x = bpy is solvable and has a unique solution given an arbitrary
y € X. The conjugate equation by o T#y* = box* is solvable and has a unique
solution given an arbitrary z# € X#.

(2) For every n € N the homogeneous equation b, 0Tz = 0 has n locally linearly
independent solutions x1 4, ...,z , and the homogeneous conjugate equation b,, o
T#y# = 0 has n locally linearly independent solutions y*fin, .oy yit . (hence have
nonzero solutions).

(8) The equation Tz = y is solvable if and only if b, oy’ (y) =0 (R €N, k <
n). The conjugate equation T#y#* = z# is solvable if and only if b,, o z# (z4,,) = 0
(neN, k<n).

(4) The general solution z of the equation Tx = y has the form

T = bo—i by, <:Un + z”: )\k,niUk,n> ;
n=1 k=1

where z,, is a particular solution of the equation b, o Tz = b,y and (Mg, )neN,k<n
are arbitrary elements in A.
The general solution y* of the conjugate equation T#y#* = x# has the form

o0 n
vt = b0 b, (y 'y Ay) |
n=1 k=1

where y7 is a particular solution of the equation b, o T#y# = b,x*, and Ay, are
arbitrary elements A for n € N and k < n.

4.3. Theorem. If S is a cyclically compact operator in a B-cyclic space X
then the Fredholm B-Alternative is valid for the operator T := [x <S.

< Again we assume, without loss of generality, that X is the bounded part of
the descent of a Banach space X € V(B) and T is the restriction onto X of the
descent of a bounded linear operator 7 € V(B). Moreover, [T = Iy <S] = 1 and
[S is a compact operator in X' = 1. We may assume that also X = X*|*>° and
T = T*]°°, see [1; 5.5.10]. The Fredholm Alternative 4.1 is fulfilled for 7 inside
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V(B by virtue of the Transfer Principle. In other words, the following relations
hold:

L=Two(T) vV @ eN)pi(n, T) &pa(n, T) & ps(n, T)]
=Teo(MIV \ [e1(n", DIA L2, T A Ts(n, T) .

neN

Denote bg:= [o(T)] and by, := [p1(n", T) Al p2(n*, T) Al ¢3(n”, T)]. Since the
formulas o (7) and p1(n, T) & p2(n, T) & @3(n, T)) for different n are inconsistent,
the sequence (b,)22 , is a partition of unity in B. We will now prove that 4.2 (1-4)
are valid.

(1): The claim 4.2 (1) is equivalent to the identities ker(T") = {0} and im(T") =
X that are ensured by the following easy relations:

VB = ker(T)t=ker(T) = {0}, V& =im(T)t=im(T) = X.

(2): The part of the assertion ¢ (n”", T) concerning the solution of the equation
Tz = 0 is formalized as

(Fz) (#: {1,...,n}" = X) & (Vk € {1,...,n}") (Tz(k) = 0)
& the set z({1,...,n}") is linearly independent)).

Moreover, there is no loss of generality in assuming that ||z(k)|| < 1,k € {1,...,n}".
Using the Maximum Principle and the properties of the modified descent we may
find a mapping x from {1,...,n} to X such that the image of the mapping b,x :
k — bpx(k) is a locally linearly independent set in X and [7x(k) = 0] > b, for
each k € {1,...,n}. Put =3, := b,x(k). Further,

[Tepn,=0]=[Tx(k)=0]A[x(k) =2kn] > by,

so that b,Txy , = 0. The conjugate homogeneous equation is handled in the same
fashion.

(3): Necessity of the stated conditions can be easily checked; prove sufficiency.
We confine exposition to the equation Tx = y, since the conjugate equation is
considered along similar lines. Suppose that y}fn(y) =0 for k,n € N and k < n.
Then

b <[yi () =01 =Tyt (y) =0] (ke{l,...,n}).

At the same time, in view of (2), [[{y,jn : k=1,...,n}7T is a maximal linearly
independent set of solutions of the equation 7*y* = 0] = 1. All this implies that
[ the equation Tz = y is solvable | > b,,, whence the equation b, o Tx = b,y has at
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least one solution z,,. It is then easy to check that z:= 22021 b,x, is a solution of
the equation Tx = y.

(4): If z is a solution of the equation Tz = y then [ Tx = y] = 1. Taking into
account the inequality [ ¢3(n",T)] > b,, we arrive at

nA

bo <[AN (A {10}t 5 R&z ="+ Ak)u(k))],
k=1
where u is the ascent of the mapping k£ — =y, (k = 1,...,n). The Maximum
Principle guarantees the existence of a mapping ¢, from {1,...,n} to A such that

[z =2+ tat (k)u(k)] = 1.
k=1
Putting Mg ., := b4y, (k), we obtain

n
bnl' - bnl'n + Z Ak,nbnl'k,n:
k=1
whence the desired representation follows. The general form of the solution of the
conjugate equation is established by similar arguments. >

5. Concluding remarks

5.1. The bounded descent of 1.4 appeared in the research by G. Takeuti into
von Neumann algebras and C*-algebras within Boolean-valued models [5, 6] and
in the research by M. Ozawa into Boolean-valued interpretation of the theory of
Hilbert spaces [7]. Theorem 3.4 on Boolean-valued representation of Kaplansky—
Hilbert modules was proved by M. Ozawa [7].

5.2. Cyclically compact sets and operators in lattice-normed spaces were in-
troduced in [8] and [3], respectively. Diffrernt aspects of cyclical compactness see
in [9-12]. A standard proof of Theorem 2.4 can be extracted from [3] wherein more
general approach is developed for the case of lattice normed space. Certain variants
of Theorems 3.5 and 4.3 for operators in Banach—Kantorovich spaces can be also
found in [3].

5.3. The famous result by P. G. Dodds and D. H. Fremlin [13] asserts that if
a positive operator acting from a Banach lattice whose dual has order continuous
norm to a Banach lattice with order continuous norm is dominated by a compact
operator then the initial operator is also compact, see [14] for proof and related
results. As regards cyclical compactness, we observe the conjecture of [15] that if
a dominated operator 7" between spaces with mixed norm is cyclically compact and
|7] < S with S compact then T is also compact on assuming some conditions on
the norm lattices like in the Dodds—Fremlin Theorem. This problem remains open.
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