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Circular groups, planar groups, and the Euler class
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Abstract We study groups of C1 orientation-preserving homeomorphisms
of the plane, and pursue analogies between such groups and circularly-
orderable groups. We show that every such group with a bounded orbit
is circularly-orderable, and show that certain generalized braid groups are
circularly-orderable.

We also show that the Euler class of C∞ diffeomorphisms of the plane is
an unbounded class, and that any closed surface group of genus > 1 admits
a C∞ action with arbitrary Euler class. On the other hand, we show that
Z ⊕ Z actions satisfy a homological rigidity property: every orientation-
preserving C1 action of Z ⊕ Z on the plane has trivial Euler class. This
gives the complete homological classification of surface group actions on R2

in every degree of smoothness.
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1 Introduction

We are motivated by the following question: what kinds of countable groups G
act on the plane? And for a given group G known to act faithfully, what is the
best possible analytic quality for a faithful action?

This is a very general problem, and it makes sense to narrow focus in order
to draw useful conclusions. Groups can be sifted through many different kinds
of strainers: finitely presented, hyperbolic, amenable, property T, residually
finite, etc. Here we propose that “acts on a circle” or “acts on a line” is an
interesting sieve to apply to groups G which act on the plane.

The theory of group actions on 1–dimensional manifolds is rich and profound,
and has many subtle connections with algebra, logic, analysis, topology, ergodic
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theory, etc. One would hope that some of the depth of this theory would carry
across to the study of group actions on 2–dimensional manifolds.

The most straightforward way to establish a connection between groups which
act in 1 and 2 dimensions is to study when the groups acting in either case are
abstractly isomorphic. Therefore we study subgroups G < Homeo+(R2), and
ask under what general conditions are they isomorphic (as abstract groups) to
subgroups of Homeo+(S1).

One reason to compare the groups Homeo+(S1) and Homeo+(R2) comes from
their cohomology as discrete groups. A basic theorem of Mather and Thurston
says that the cohomology of both of these groups, thought of as discrete groups,
is equal, and is equal to Z[e] where [e] in dimension 2 is free, and is the
Euler class. Thus at a classical algebraic topological level, these groups are
not easily distinguished, and we should not be surprised if many subgroups of
Homeo+(R2) can be naturally made to act faithfully on a circle. We estab-
lish that countable C1 groups of homeomorphisms of the plane which satisfy
a certain dynamical condition — that they have a bounded orbit — are all
isomorphic to subgroups of Homeo+(S1).

On the other hand, the bounded cohomology of these groups is dramatically
different. The classical Milnor–Wood inequality says that the Euler class on
Homeo+(S1) is a bounded class. By contrast, the Euler class on Homeo+(R2)
is unbounded. This was known to be true for C0 homeomorphisms; in this paper
we establish that it is also true for C∞ homeomorphisms. However, a surprising
rigidity phenomenon manifests itself: for C1 actions of Z⊕Z we show that the
Euler class must always vanish, which would be implied by boundedness. This
is surprising for two reasons: firstly, because we show that the Euler class can
take on any value for C∞ actions of higher genus surface groups, and secondly
because the Euler class can take on any value for C0 actions of Z⊕Z. It would
be very interesting to understand the full range of this homological rigidity.

We now turn to a more precise statement of results.

1.1 Statement of results

Section 2 contains background material on left-orderable and circularly-order-
able groups. This material is all standard, and is collected there for the con-
venience of the reader. The main results there are that a countable group
is left-orderable iff it admits an injective homomorphism to Homeo+(R), and
circularly-orderable iff it admits an injective homomorphism to Homeo+(S1).
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Thus, group actions on 1–manifolds can be characterized in purely algebraic
terms. The expert may feel free to skip Section 2 and move on to Section 3.

Section 3 concerns C1 subgroups G < Homeo+(R2) with bounded orbits. Our
first main result is a generalization of a theorem of Dehornoy [7] about order-
ability of the usual braid groups.

For C a compact, totally disconnected subset of the open unit disk D , we use
the notation BC to denote the group of homotopy classes of homeomorphisms
of D\C to itself which are fixed on the boundary, and B′

C to denote the group
of homotopy classes of (orientation-preserving) homeomorphisms which might
or might not be fixed on the boundary. Informally, BC is the “braid group”
of C . In particular, if C consists of n isolated points, BC is the usual braid
group on n strands.

Theorem A Let C be a compact, totally disconnected subset of the open

unit disk D . Then B′
C is circularly-orderable, and BC is left-orderable.

Using this theorem and the Thurston stability theorem [37], we show the fol-
lowing:

Theorem B Let G be a group of orientation preserving C1 homeomorphisms

of R2 with a bounded orbit. Then G is circularly-orderable.

Section 4 concerns the Euler class for planar actions. As intimated above, we
show that the Euler class can take on any value for C∞ actions of higher genus
surface groups:

Theorem C For each integer i, there is a C∞ action

ρi : π1(S) → Diffeo+(R2)

where S denotes the closed surface of genus 2, satisfying

ρ∗i ([e])([S]) = i.

In particular, the Euler class [e] ∈ H2(Diffeo+(R2); Z) is unbounded.

This answers a question of Bestvina.

Using this result, we are able to construct examples of finitely-generated torsion-
free groups of orientation-preserving homeomorphisms of R2 which are not
circularly-orderable, thereby answering a question of Farb.

It might seem from this theorem that there are no homological constraints on
group actions on R2 , but in fact for C1 actions, we show the following:
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Theorem D Let ρ : Z ⊕ Z → Homeo+(R2) be a C1 action. Then the Euler

class ρ∗([e]) ∈ H2(Z ⊕ Z; Z) is zero.

It should be emphasized that this is not a purely local theorem, but uses in an es-
sential way Brouwer’s famous theorem on fixed-point-free orientation-preserving
homeomorphisms of R2 .

Together with an example of Bestvina, theorems C and D give a complete ho-
mological classification of (orientation-preserving) actions of (oriented) surface
groups on R2 in every degree of smoothness.
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2 Left-orderable groups and circular groups

In this section we define left-orderable and circularly-orderable groups, and
present some of their elementary properties. None of the material in this section
is new, but perhaps the exposition will be useful to the reader. Details and
references can be found in [29], [38], [11], [21] and [20], as well as other papers
mentioned in the text as appropriate.

2.1 Left-invariant orders

Definition 2.1.1 Let G be a group. A left-invariant order on G is a total
order < such that, for all α, β, γ in G,

α < β iff γα < γβ.

A group which admits a left-invariant order is said to be left-orderable.
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We may sometimes abbreviate “left-orderable” to LO. Note that a left-order-
able group may admit many distinct left-invariant orders. For instance, the
group Z admits exactly two left-invariant orders.

The following lemma gives a characterization of left-orderable groups:

Lemma 2.1.2 A group G admits a left-invariant order iff there is a disjoint

partition of G = P ∪N ∪ Id such that P · P ⊂ P and P−1 = N .

Proof If G admits a left-invariant order, set P = {g ∈ G : g > Id}. Con-
versely, given a partition of G into P,N, Id with the properties above, we can
define a left-invariant order by setting h < g iff h−1g ∈ P .

Notice that Lemma 2.1.2 implies that any nontrivial LO group is infinite, and
torsion-free. Notice also that any partition of G as in Lemma 2.1.2 satisfies
N ·N ⊂ N . For such a partition, we sometimes refer to P and N as the positive

and negative cone of G respectively.

LO is a local property. That is to say, it depends only on the finitely-generated

subgroups of G. We make this precise in the next two lemmas. First we show
that if a group fails to be left-orderable, this fact can be verified by examining a
finite subset of the multiplication table for the group, and applying the criterion
of Lemma 2.1.2.

Lemma 2.1.3 A group G is not left-orderable iff there is some finite symmetric

subset S = S−1 of G with the property that for every disjoint partition S\Id =
PS ∪NS , one of the following two properties holds:

(1) PS ∩ PS
−1 6= ∅ or NS ∩NS

−1 6= ∅

(2) (PS · PS) ∩NS 6= ∅ or (NS ·NS) ∩ PS 6= ∅

Proof It is clear that the existence of such a subset contradicts Lemma 2.1.2.
So it suffices to show the converse.

The set of partitions of G\Id into disjoint sets P,N is just 2G\Id , which is
compact with the product topology by Tychonoff’s theorem. By abuse of no-
tation, if π ∈ 2G\Id and g ∈ G\Id, we write π(g) = P or π(g) = N depending
on whether the element g is put into the set P or N under the partition
corresponding to π .

For every element α ∈ G\Id, define Aα to be the open subset of 2G\Id for which
π(α) = π(α−1). For every pair of elements α, β ∈ G\Id with α 6= β−1 , define
Bα,β to be the open subset of 2G\Id for which π(α) = π(β) but π(α) 6= π(αβ).
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Now, if G is not LO, then by Lemma 2.1.2, every partition π ∈ 2G\Id is con-
tained in some Aα or Bα,β . That is, the sets Aα, Bα,β are an open cover of
2G\Id . By compactness, there is some finite subcover. Let S denote the set
of indices of the sets Aα, Bα,β appearing in this finite subcover, together with
their inverses. Then S satisfies the statement of the lemma.

Remark 2.1.4 An equivalent statement of this lemma is that for a group
G which is not LO, there is a finite subset S = {g1, · · · , gn} ⊂ G\Id with
S ∩S−1 = ∅ such that for all choices of signs ei ∈ ±1, the semigroup generated
by the gei

i contains Id.

To see this, observe that a choice of sign ei ∈ ±1 amounts to a choice of partition
of S ∪ S−1 into PS and NS . Then if G is not LO, the semigroup of positive
products of the PS must intersect the semigroup of positive products of the NS ;
that is, p = n for p in the semigroup generated by PS and n in the semigroup
generated by NS . But this implies n−1 is in the semigroup generated by PS ,
and therefore so too is the product n−1p = Id.

Remark 2.1.5 Given a finite symmetric subset S of G and a multiplication
table for G, one can check by hand whether the set S satisfies the hypotheses
of Lemma 2.1.3. It follows that if G is a group for which there is an algorithm
to solve the word problem, then if G is not left-orderable, one can certify that
G is not left-orderable by a finite combinatorial certificate.

The next lemma follows easily from Lemma 2.1.3:

Lemma 2.1.6 A group G is left-orderable iff every finitely-generated subgroup

is left-orderable.

Proof We use the A,B notation from Lemma 2.1.3.

Observe that a left-ordering on G restricts to a left-ordering on any finitely-
generated subgroup H < G.

Conversely, suppose G is not left-orderable. By Lemma 2.1.3 we can find a
finite set S satisfying the hypotheses of that lemma. Let H be the group
generated by S . Then Lemma 2.1.3 implies that H is not left-orderable.

Remark 2.1.7 To see this in more topological terms: observe that there is a
restriction map

res : 2G\Id → 2H\Id
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which is surjective, and continuous with respect to the product topologies. It
follows that the union of the sets res(Aα), res(Bα,β) with α, β ∈ S is an open
cover of 2H\Id , and therefore H is not left-orderable.

We now study homomorphisms between LO groups.

Definition 2.1.8 Let S and T be totally-ordered sets. A map φ : S → T is
monotone if for every pair s1, s2 ∈ S with s1 > s2 , either φ(s1) > φ(s2) or
φ(s1) = φ(s2).

Let G and H be left-orderable groups, and choose a left-invariant order on each
of them. A homomorphism φ : G→ H is monotone if it is monotone as a map
or totally-ordered sets.

LO behaves well under short exact sequences:

Lemma 2.1.9 Suppose K,H are left-orderable groups, and suppose we have

a short exact sequence

0 −→ K −→ G −→ H −→ 0.

Then for every left-invariant order on K and H , the group G admits a left-

invariant order compatible with that of K , such that the surjective homomor-

phism to H is monotone.

Proof Let φ : G → H be the homomorphism implicit in the short exact se-
quence. The order on G is uniquely determined by the properties that it is
required to satisfy:

(1) If φ(g1) 6= φ(g2) then g1 > g2 in G iff φ(g1) > φ(g2) in H

(2) If φ(g1) = φ(g2) then g−1
2 g1 ∈ K , so g1 > g2 in G iff g−1

2 g1 > Id in K

This defines a total order on G and is left-invariant, as required.

Definition 2.1.10 A group G is locally LO–surjective if every finitely-gener-
ated subgroup H admits a surjective homomorphism φH : H → LH to an
infinite LO group LH .

A group G is locally indicable if every finitely-generated subgroup H admits
a surjective homomorphism to Z. In particular, a locally indicable group is
locally LO–surjective, though the converse is not true.

The following theorem is proved in [4]. We give a sketch of a proof.
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Theorem 2.1.11 (Burns–Hale) Suppose G is locally LO–surjective. Then

G is LO.

Proof Suppose G is locally LO–surjective but not LO. Then by Remark 2.1.4,
there is some finite subset {g1, . . . , gn} ⊂ G\Id such that, for all choices of signs
ei ∈ ±1, the semigroup of positive products of the elements gei

i contains Id.
Choose a set of such gi such that n is smallest possible (obviously, n ≥ 2).
Let G′ = 〈g1, . . . , gn〉. Then G′ is finitely-generated. Since G is locally LO–
surjective, G′ admits a surjective homomorphism to an infinite LO group

ϕ : G′ → H

with kernel K . By the defining property of the {gi}, at least one gi is in
K since otherwise there exist choices of signs ei ∈ ±1 such that ϕ(gei

i ) is in
the positive cone of H , and therefore the same is true for the semigroup of
positive products of such elements. But this would imply that the semigroup of
positive products of the gei

i does not contain Id in G′ , contrary to assumption.
Furthermore, since H is nontrivial and ϕ is surjective, at least one gj is not in
K .

Reorder the indices of the gi so that g1, . . . , gk /∈ K and gk+1, . . . , gn ∈ K . Let
P (H) denote the positive elements of H . Since the gi with i ≤ k are not in
K , it follows that there are choices δ1, . . . , δk ∈ ±1 such that ϕ(gδi

i ) ∈ P (H).
Moreover, since n was chosen to be minimal, there exist choices δk+1, . . . , δn ∈

±1 such that no positive product of elements of g
δk+1

k+1 , . . . , g
δn

n is equal to Id.

On the other hand, by the definition of gi , there are positive integers ni such
that

Id = g
n1δi(1)

i(1) · · · g
nsδi(s)

i(s)

where each i(j) is between 1 and n. By hypothesis, i(j) ≤ k for at least one
j . But this implies that the image of the right hand side of this equation under
ϕ is in P (H), which is a contradiction.

Theorem 2.1.11 has the corollary that a locally indicable group is LO. It is this
corollary that will be most useful to us.

2.2 Circular orders

The approach we take in this section is modelled on [38], although an essentially
equivalent approach is found in [11].
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We first define a circular ordering on a set. Suppose p is a point in an oriented
circle S1 . Then S1\p is homeomorphic to R, and the orientation on R defines
a natural total order on S1\p. In general, a circular order on a set S is defined
by a choice of total ordering on each subset of the form S\p, subject to certain
compatibility conditions which we formalize below.

Definition 2.2.1 Let S be a set. A circular ordering on a set S with at least
4 elements is a choice of total ordering on S\p for every p ∈ S , such that if <p

is the total ordering defined by p, and p, q ∈ S are two distinct elements, the
total orderings <p, <q differ by a cut on their common domain of definition.
That is, for any x, y distinct from p, q , the order of x and y with respect to
<p and <q is the same unless x <p q <p y , in which case we have y <q p <q x.
We also say that the order <q on S\{p, q} is obtained from the order <p on
S\p by cutting at q .

If S has exactly 3 elements S = {x, y, z}, we must add the condition that
y <x z iff z <y x. Note that this condition is implied by the condition in the
previous paragraph if S has at least 4 elements.

To understand the motivation for the terminology, consider the operation of
cutting a deck of cards.

Example 2.2.2 The oriented circle S1 is circularly-ordered, where for any p,
the ordering <p is just the ordering on S1\p ∼= R induced by the orientation
on R.

Definition 2.2.3 A set with three elements x, y, z admits exactly two circular
orders, depending on whether y <x z or z <x y . In the first case, we say the
triple (x, y, z) is positively-ordered and in the second case, we say it is negatively-

ordered.

We also refer to a positively-ordered triple of points as anticlockwise and a
negatively-ordered triple as clockwise, by analogy with the standard circular
order on triples of points in the positively oriented circle.

A circular ordering on a set S induces a circular ordering on any subset T ⊂ S .
If Tα is a family of subsets of S which are all circularly-ordered, we say the
circular orderings on the Tα are compatible if they are simultaneously induced
by some circular ordering on S .

It is clear that a circular ordering on a set S is determined by the family of
circular orderings on all triples of elements in S . Conversely, the following
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lemma characterizes those families of circular orderings on triples of elements
which arise from a circular ordering on all of S :

Lemma 2.2.4 Suppose S is a set. A circular ordering on all triples of distinct

elements on S is compatible iff for every subset Q ⊂ S with four elements,

the circular ordering on triples of distinct elements of Q is compatible. In this

case, these circular orderings are uniquely compatible, and determine a circular

ordering on S .

Proof A circular ordering on triples in S defines, for any p ∈ S , a binary
relation <p on S\p by x <p y iff the triple (p, x, y) is positively-ordered. To
see that this binary relation defines a total ordering on S\p, we must check
transitivity of <p . But this follows from compatibility of the circular ordering
on quadruples Q. It is straightforward to check that the total orders <p and
<q defined in this way differ by a cut for distinct p, q .

Definition 2.2.5 Let C1, C2 be circularly-ordered sets. A map φ : C1 → C2 is
monotone if for each c ∈ C2 and each d ∈ φ−1(c), the restriction map between
totally-ordered sets

φ : (C1\φ
−1(c), <d) → (C2\c,<c)

is monotone.

There is a natural topology on a circularly-ordered set for which monotone
maps are continuous.

Definition 2.2.6 Let O,< be a totally-ordered set. The order topology on O
is the topology generated by open sets of the form {x|x > p} and {x|x < p}
for all p ∈ O . Let S be a circularly-ordered set. The order topology on S
is the topology generated on each S\p by the (usual) order topology on the
totally-ordered set S\p,<p .

We now turn to the analogue of left-ordered groups for circular orderings.

Definition 2.2.7 A group G is left circularly-ordered if it admits a circular
order as a set which is preserved by the action of G on itself on the left. A
group is left circularly-orderable if it can be left circularly-ordered.

We usually abbreviate this by saying that a group is circularly-orderable if it
admits a circular order.
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Example 2.2.8 A left-orderable group G,< is circularly-orderable as follows:
for each element g ∈ G, the total order <g on G\g is obtained from the total
order < by cutting at g .

Definition 2.2.9 The group of orientation-preserving homeomorphisms of R

is denoted Homeo+(R). The group of orientation-preserving homeomorphisms
of the circle is denoted Homeo+(S1).

An action of G on R or the circle by orientation-preserving homeomorphisms
is the same thing as a representation in Homeo+(R) or Homeo+(S1). We will
see that for countable groups G, being LO is the same as admitting a faithful
representation in Homeo+(R), and CO is the same as admitting a faithful
representation in Homeo+(S1). First we give one direction of the implication.

Lemma 2.2.10 If G is countable and admits a left-invariant circular order,

then G admits a faithful representation in Homeo+(S1).

Proof Let gi be a countable enumeration of the elements of G. We define an
embedding e : G→ S1 as follows. The first two elements g1, g2 map to arbitrary
distinct points in S1 . Thereafter, we use the following inductive procedure to
uniquely extend e to each gn .

Firstly, for every n > 2, the map

e :
⋃

i≤n

gi −→
⋃

i≤n

e(gi)

should be injective and circular-order-preserving, where the e(gi) are circul-
arly-ordered by the natural circular ordering on S1 . Secondly, for every n >
2, the element e(gn) should be taken to the midpoint of the unique interval
complementary to

⋃
i<n e(gi) compatible with the first condition. This defines

e(gn) uniquely, once e(gi) has been defined for all i < n.

It is easy to see that the left action of G on itself extends uniquely to a contin-
uous order preserving homeomorphism of the closure e(G) to itself. The com-
plementary intervals Ii to e(G) are permuted by the action of G; we choose an
identification ϕi : Ii → I of each interval with I , and extend the action of G
so that if g(Ii) = Ij then the action of g on Ii is equal to

g|Ii
= ϕ−1

j ϕi.

This defines a faithful representation of G in Homeo+(S1), as claimed.
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Remark 2.2.11 Note that basically the same argument shows that a left-
orderable countable group is isomorphic to a subgroup of Homeo+(R). Notice
further that this construction has an important property: if G is a countable
left- or circularly-ordered group, then G is circular or acts on R in such a way
that some point has trivial stabilizer. In particular, any point in the image of
e has trivial stabilizer.

Short exact sequences intertwine circularity and left-orderability:

Lemma 2.2.12 Suppose

0 −→ K −→ G −→ H −→ 0

is a short exact sequence, where K is left-ordered and H is circularly-ordered.

Then G can be circularly-ordered in such a way that the inclusion of K into

G respects the order on G\g for any g not in K , and the map from G to H
is monotone.

Proof Let φ : G → H be the homomorphism in the short exact sequence.
Let g1, g2, g3 be three distinct elements of G. We define the circular order as
follows:

(1) If φ(g1), φ(g2), φ(g3) are distinct, circularly-order them by the circular
order on their image in H

(2) If φ(g1) = φ(g2) but these are distinct from φ(g3), then g−1
2 g1 ∈ K . If

g−1
2 g1 < Id then g1, g2, g3 is positively-ordered, otherwise it is negatively-

ordered

(3) If φ(g1) = φ(g2) = φ(g3) then g−1
3 g1, g

−1
3 g2, Id are all in K , and therefore

inherit a total ordering. The three corresponding elements of G in the
same total order are negatively-ordered

One can check that this defines a left-invariant circular order on G.

Here our convention has been that the orientation-preserving inclusion of R

into S1\p is order-preserving.

We will show that for countable groups, being LO or CO is equivalent to admit-
ting a faithful representation in Homeo+(R) or Homeo+(S1) respectively. But
first we must describe an operation due to Denjoy [9] of blowing up or Denjoying

an action.
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Construction 2.2.13 (Denjoy) Let ρ : G → Homeo+(S1) be an action of
a countable group on S1 . For convenience, normalize S1 to have length 1.
Let p ∈ S1 be some point. Let O denote the countable orbit of p under G,
and let φ : O → R+ assign a positive real number to each o ∈ O such that∑

o∈O φ(o) = 1. Choose some point q not in O , and define τ : [0, 1] → S1

to be an orientation-preserving parametrization by length, which takes the two
endpoints to q . Define σ : [0, 1] → [0, 2] by

σ(t) = t+
∑

o∈O : τ−1(o)≤t

φ(o).

Then σ is discontinuous on τ−1(O), and its graph can be completed to a
continuous image of I in [0, 1] × [0, 2] by adding a vertical segment of length
φ(o) at each point τ−1(o) where o ∈ O . Identify opposite sides of [0, 1] × [0, 2]
to get a torus, in which the closure of the graph of σ closes up to become a
(1, 1) curve which, by abuse of notation, we also refer to as σ . Notice that
projection πh onto the horizontal factor defines a monotone map from σ to S1 .

Then the action of G on S1 extends in an obvious way to an action on this
torus which leaves the (1, 1) curve invariant, and also preserves the foliations
of the torus by horizontal and vertical curves. Up to conjugacy in Homeo+(σ),
the action of G on σ is well-defined, and is called the blown-up action at p. The
pushforward of this blown-up action under (πh)∗ recovers the original action of
G on S1 ; that is, the two actions are related by a degree one monotone map,
and are said to be semi-conjugate. The equivalence relation that this generates
is called monotone equivalence.

With this construction available to us, we demonstrate the equivalence of CO
with admitting a faithful representation in Homeo+(S1).

Theorem 2.2.14 A countable group G is left- or circularly-ordered iff G
admits a faithful homomorphism to Homeo+(R) or Homeo+(S1) respectively.

Moreover, the action on R or S1 can be chosen so that some point has a trivial

stabilizer.

Proof In Lemma 2.2.10 we have already showed how a left or circular order
gives rise to a faithful action on R or S1 . So it remains to prove the converse.

Let φ : G → Homeo+(R) be faithful. Let pi be some sequence of points such
that the intersection of the stabilizers of the pi is the identity. Some such
sequence pi exists, since G is countable, and any nontrivial element acts non-
trivially at some point. Then each pi determines a (degenerate) left-invariant
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order on G, by setting g >i h if g(pi) > h(pi), and g =i h if g(pi) = h(pi).
Then we define g > h if g >i h for some i, and g =j h for all j < i.

The definition of a circular order is similar: pick some point p ∈ S1 , and
suppose that the stabilizer stab(p) is nontrivial. Then stab(p) acts faithfully
on S1 − p = R, so by the argument above, stab(p) is left-orderable and acts
on R. In fact, we know stab(p) acts on R in such a way that some point has
trivial stabilizer. Let ϕ : stab(p) → Homeo+(R) be such a representation. We
construct a new representation φ′ : G→ Homeo+(S1) from φ by blowing up p
as in Construction 2.2.13. The representation φ′ is monotone equivalent to φ;
that is, there is a monotone map π : S1 → S1 satisfying

π∗φ
′ = φ.

Let C ⊂ S1 be the set where the monotone map π is not locally constant.
We will modify the action of G on S1\C as follows. Note that G acts on C
by the pullback under π of the action on S1 by φ. We extend this action to
S1\C to define φ′′ . Let I be the open interval obtained by blowing up p. We
identify I with R, and then let stab(p) act on I by the pullback of ϕ under
this identification. Each other component Ii in S1\C is of the form g(I) for
some g ∈ G. Choose such a gi for each Ii , and pick an arbitrary (orientation
preserving) identification ϕi : I → Ii , and define φ′′(gi)|I = ϕi . Now, for any
g ∈ G, define g|Ii

as follows: suppose g(Ii) = Ij . Then g−1
j ggi ∈ stab(p), so

define
φ′′(g)|Ii

= ϕjϕ(g−1
j ggi)ϕ

−1
i : Ii → Ij .

It is clear that this defines a faithful representation φ′′ : G → Homeo+(S1),
monotone equivalent to φ, with the property that some point q ∈ S1 has
trivial stabilizer.

Now define a circular order on distinct triples g1, g2, g3 by restricting the circular
order on S1 to the triple g1(q), g2(q), g3(q).

Notice that in this theorem, in order to recover a left or circular order on G
from a faithful action, all we used about R and S1 was that they were ordered
and circularly-ordered sets respectively.

With this theorem, and our lemmas on short exact sequences, we can deduce
the existence of left or circular orders on countable groups from the existence
of actions on ordered or circularly-ordered sets, with left-orderable kernel.

Theorem 2.2.15 Suppose a countable group G admits an action by order

preserving maps on a totally-ordered or circularly-ordered set S in such a way
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that the kernel K is left-orderable. Then G admits a faithful, order preserving

action on R or S1 , respectively.

Proof We discuss the case that S is circularly-ordered, since this is slightly
more complicated. Since G is countable, it suffices to look at an orbit of
the action, which will also be countable. By abuse of this notation, we also
denote the orbit by S . As in Lemma 2.2.10, the set S with its order topology
is naturally order-isomorphic to a subset of S1 . Let S denote the closure
of S under this identification. Then the action of G on S extends to an
orientation-preserving action on S1 , by permuting the complementary intervals
to S . It follows that the image of G in Homeo+(S1) is CO, with kernel K . By
Lemma 2.2.12, G is CO. By Theorem 2.2.14, the proof follows.

The construction for S totally-ordered is similar.

2.3 Homological characterization of circular groups

Circular orders on groups G can be characterized homologically. There are at
least two different ways of doing this, due to Thurston and Ghys respectively,
which reflect two different ways of presenting the theory of group cohomology.

First, we recall the definition of group cohomology. For details, we refer to [21]
or [20].

Definition 2.3.1 Let G be a group. The homogeneous chain complex of G
is a complex C∗(G)h where Cn(G)h is the free abelian group generated by
equivalence classes of (n + 1)–tuples (g0 : g1 : · · · : gn), where two such tuples
are equivalent if they are in the same coset of the left diagonal action of G on
the coordinates. That is,

(g0 : g1 : · · · : gn) ∼ (gg0 : gg1 : · · · : ggn).

The boundary operator in homogeneous coordinates is very simple, defined by
the formula

∂(g0 : · · · : gn) =

n∑

i=0

(−1)i(g0 : · · · : ĝi : · · · : gn).

The inhomogeneous chain complex of G is a complex C∗(G)i where Cn(G)i
is the free abelian group generated by n–tuples (f1, . . . , fn). The boundary
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operator in inhomogeneous coordinates is more complicated, defined by the
formula

∂(f1, . . . , fn) = (f2, . . . , fn) +

n−1∑

i=1

(−1)i(f1, . . . , fifi+1, . . . , fn)

+ (−1)n(f1, . . . , fn−1).

The relation between the two coordinates comes from the following bijection of
generators

(g0 : g1 : · · · : gn) −→ (g−1
0 g1, g

−1
1 g2, . . . , g

−1
n−1gn)

which correctly transforms one definition of ∂ to the other. It follows that the
two chain complexes are canonically isomorphic, and therefore by abuse of no-
tation we denote either by C∗(G), and write an element either in homogeneous
or inhomogeneous coordinates as convenient.

Let R be a commutative ring. The homology of the complex C∗(G) ⊗ R is
denoted H∗(G;R), and the homology of the adjoint complex Hom(C∗(G), R)
is denoted H∗(G;R). If R = Z, we abbreviate these groups to H∗(G) and
H∗(G) respectively. If G is a topological group, and we want to stress that this
is the abstract group (co)homology, we denote these groups by H∗(G

δ) and
H∗(Gδ) respectively (δ denotes the discrete topology).

We give a geometrical interpretation of this complex. The simplicial realization
of the complex C∗(G) is a model for the classifying space BG, where G has
the discrete topology. If G is torsion-free, an equivalent model for EG is the
complete simplex on the elements of G. In this case, since G is torsion-free,
it acts freely and properly discontinuously on this simplex, with quotient BG.
If we label vertices of EG tautologically by elements of G, the labels on each
simplex give homogeneous coordinates on the quotient. If we label edges of
EG by the difference of the labels on the vertices at the ends, then the labels
are well-defined on the quotient; the labels on the n edges between consecutive
vertices of an n–simplex, with respect to a total order of the vertices, give
inhomogeneous coordinates.

In particular, the cohomology H∗(G) is just the cohomology of the K(G, 1),
that is, of the unique (up to homotopy) aspherical space with fundamental group
isomorphic to G. If G is not torsion-free, this equality of groups is nevertheless
true.

The cohomology of the group Homeo+(S1) is known by a general theorem of
Mather and Thurston (see [36] or [40] for details and more references):
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Theorem 2.3.2 (Mather, Thurston) For any manifold M , there is an iso-

morphism of cohomology rings

H∗(Homeo(M)δ ; Z) ∼= H∗(BHomeo(M); Z)

where BHomeo(M) denotes the classifying space of the topological group of

homeomorphisms of M , and the left hand side denotes the group cohomology
of the abstract group of homeomorphisms of M .

For M = S1 or R2 , the topological group Homeo+(M) is homotopy equivalent
to a circle. For S1 , this is trivial. For R2 , we observe that Homeo+(R2) is
the stabilizer of a point in Homeo+(S2), and then apply a theorem of Kneser
[18] about the homotopy type of Homeo+(S2). It follows that BHomeo+(M)
in either case is homotopic to CP∞ , and therefore there is an isomorphism of
rings

H∗(Homeo+(R2); Z) ∼= H∗(Homeo+(S1); Z) ∼= Z[e]

where [e] is a free generator in degree 2 called the Euler class.

An algebraic characterization of the Euler class can be given.

Definition 2.3.3 For any group G with H1(G; Z) = 1, there is a universal

central extension

0 −→ A −→ Ĝ −→ G −→ 0

where A is abelian, with the property that for any other central extension

0 −→ B −→ G′ −→ G −→ 0

there is a unique homomorphism from Ĝ → G′ , extending uniquely to a mor-
phism of short exact sequences.

A non-split central extension G′ can be characterized as the universal central
extension of G iff G is perfect (i.e. H1(G; Z) = 1) and every central extension
of G′ splits. See Milnor [24] for more details.

For G = Homeo+(S1), the universal central extension is denoted Hõmeo
+
(S1),

and can be identified with the preimage of Homeo+(S1) in Homeo+(R) under
the covering map R → S1 . The center of Hõmeo

+
(S1) is Z, and the class

of this Z extension is called the Euler class. By the universal property of this
extension, one sees that this class is the generator of H2(Homeo+(S1); Z). This
can be summarized by a short exact sequence

0 −→ Z −→ Hõmeo
+
(S1) −→ Homeo+(S1) −→ 0.

The following construction is found in [38]. An equivalent construction is given
in [17].
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Construction 2.3.4 (Thurston) Let G be a countable CO group, and let
ρ : G→ Homeo+(S1) be constructed as in Theorem 2.2.14 so that the point p
has trivial stabilizer. For each triple g0, g1, g2 ∈ G of distinct elements, define
the cocycle

c(g0 : g1 : g2) =

{
1 if (g0(p), g1(p), g2(p)) is positively oriented

−1 otherwise.

It is clear that c is well-defined on the homogeneous coordinates for C2(G).
Then extend c to degenerate triples by setting it equal to 0 if at least two of
its coefficients are equal.

The fact that the circular order on triples of points in S1 is compatible on
quadruples is exactly the condition that the coboundary of c is 0 — that is, c
is a cocycle, and defines an element [c] ∈ H2(G; Z).

The following (related) construction is found in [11]:

Construction 2.3.5 (Ghys) Let G be a countable CO group. Let ρ : G →
Homeo+(S1) be constructed as in Theorem 2.2.14. By abuse of notation, we
identify G with its image ρ(G). Let Ĝ denote the preimage of G in the
extension Hõmeo

+
(S1) ⊂ Homeo+(R). Define a section s : G → Ĝ uniquely

by the property that s(g)(0) ∈ [0, 1). For each pair of elements g0, g1 ∈ G,
define the cocycle

e(g0, g1) = s(g0g1)
−1s(g0)s(g1)(0).

Then one can check that e is a cocycle on C2(G) in inhomogeneous coordinates,
and defines an element [e] ∈ H2(G; Z). Moreover, e takes values in {0, 1}.

The following lemma can be easily verified; for a proof, we refer to [38] or [17].

Lemma 2.3.6 (Ghys, Jekel, Thurston) Let G be a countable circularly-

ordered group. The cocycles e, c satisfy

2[e] = [c].

Moreover, the class [e] is the Euler class of the circular order on G.

Actually, the restriction to countable groups is not really necessary. One can
define the cocycles c, e directly from a circular order on an arbitrary group G.
This is actually done in [38] and [11]; we refer the reader to those papers for
the more abstract construction.
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Theorem 2.3.7 Let G be a circularly-ordered group with Euler class [e] ∈
H2(G; Z). If [e] = 0, then G is left-ordered. In any case, the central extension

of G corresponding to the class [e] is left-orderable.

Proof We prove the theorem for G countable; the general case is proved in
[11].

From the definition of s in Construction 2.3.5 and Lemma 2.3.6, we see that e
is the obstruction to finding some (possibly different) section G→ Ĝ. But Ĝ is
a subgroup of the group Homeo+(R). Now, every finitely-generated subgroup
of Homeo+(R) is left-orderable, by Theorem 2.2.14. It follows by Lemma 2.1.6
that the entire group Homeo+(R) is left-orderable; in particular, so is Ĝ.

2.4 Bounded cohomology and the Milnor–Wood inequality

Construction 2.3.4 and Construction 2.3.5 do more than give an explicit repre-
sentative cocycle of the Euler class; they verify that this cocycle has a further
additional property, namely that the Euler class is a bounded cocycle on G.

Definition 2.4.1 Suppose R = R or Z. Define an L1 norm on Ci(G) in the
obvious way by

∥∥∥∥∥
∑

j

sj(g0(j) : g1(j) : · · · : gi(j))

∥∥∥∥∥
1

=
∑

j

|sj |.

Dually, the L∞ norm is partially defined on Hom(Ci(G);R), and the subspace
consisting of homomorphisms of finite L∞ norm is denoted Homb(Ci(G);R).
The coboundary takes cochains of finite L∞ norms to cocycles of finite L∞

norm, and therefore we can take the cohomology of the subcomplex. This
cohomology is denoted H∗

b (G; R) and is called the bounded cohomology of G.
For an element α ∈ H∗

b (G; R), the norm of α, denoted ‖α‖∞ or just ‖α‖, is
the infimum of ‖c‖∞ over cocycles c with [c] = α.

When we do not make coefficients explicit, the norm of a bounded cocycle refers
to its norm amongst representatives with R coefficients.

In this language, the famous Milnor–Wood inequality [25], [42] can be expressed
as follows:

Theorem 2.4.2 (Milnor–Wood) Let G be a circularly-ordered group. Then

the Euler class [e] of G is an element of H2
b (G) with norm ‖[e]‖ ≤ 1

2 .
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Proof Let e be the cocycle constructed by Ghys. Then c
2 = e− 1

2 is homolo-
gous to e, and has norm ≤ 1

2 .

We will see in Section 4 that although Homeo+(S1) and Homeo+(R2) have the
same cohomology as abstract groups, their bounded cohomology groups are very
different. This difference persists to the smooth category, as we shall see.

3 Planar groups with bounded orbits

The purpose of this section is to show that every group of C1 orientation-
preserving homeomorphisms of R2 with a bounded orbit is circularly-orderable.
The main tools will be the Thurston stability theorem, and certain general-
izations of the braid groups. In the course of the proof we also show that
the mapping class group of a compact totally disconnected set in the plane is
circularly-orderable, and the mapping class group rel. boundary of such a set
in the disk is left-orderable. This generalizes a theorem of Dehornoy [7] on
orderability of the usual (finitely-generated) braid groups.

3.1 Prime ends

In this section we describe some elements of the theory of prime ends. For
details of proofs and references, consult [30] or [22].

Prime ends are a technical tool, developed in conformal analysis, to study the
boundary behaviour of conformal maps which take the unit disk in C to the
interior U of a region K whose boundary is not locally connected. They were
introduced by Carathéodory in [6]. If ∂K is locally connected, then the prime
ends of ∂K are just the proper homotopy classes of proper rays in U .

Definition 3.1.1 Let U be a bounded open subset of R2 , and let K denote
its closure. Fix the notation ∂K = K\U . Notice that this might not be the
frontier of K in the usual sense. A null chain is a sequence of proper arcs
(Ci, ∂Ci) ⊂ (K,∂K) where int(Ci) ⊂ U is an embedding, but whose endpoints
are not necessarily distinct, such that the following conditions are satisfied:

(1) Cn ∩ Cn+1 = ∅

(2) Cn separates C0 from Cn+1 in U

(3) The diameter of the Cn converges to 0 as n→ ∞.
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A prime end of U is an equivalence class of null chains, where two null chains
{Ci}, {C

′
i} are equivalent if for every sufficiently large m, there is an n such

that C ′
m separates C0 from Cn , and Cm separates C ′

0 from C ′
n .

For such a set U , denote the set of prime ends of U by P(U).

Example 3.1.2 Let D denote the open unit disk in C. Then P(D) is in
natural bijective correspondence with ∂D .

Notice that any homeomorphism of R2 which fixes U as a set will induce an
automorphism of P(U). On the other hand, a self-homeomorphism of U which
does not extend continuously to U will not typically induce an automorphism
of P(U), since for instance the image of a properly embedded arc Ci with
endpoints on U\U will not necessarily limit to well-defined endpoints in U .

Lemma 3.1.3 Let U be a simply-connected, bounded, open subset of R2 .

Then the set of prime ends P(U) admits a natural circular order.

Proof Let ϕ : U → D be a uniformizing map. Then the set of prime ends of U
is taken bijectively to the set of prime ends of D . This is not entirely trivial; it
is contained in proposition 2.14 and theorem 2.15 in [30]. In any case, this map
identifies P(U) with ∂D . Thus P(U) inherits a natural circular ordering from
∂D . If ϕ′ is another uniformizing map, then ϕ′◦ϕ−1 is a Möbius transformation
of ∂D , and therefore preserves the circular order.

If ϕ : U → V is a conformal map between simply connected domains, then let
ϕ∗ : P(U) → P(V ) denote the corresponding map between prime ends. As in
the proof of Lemma 3.1.3, the proof that ϕ∗ is well-defined is found in [30].

Lemma 3.1.4 Suppose ϕ : R2 → R2 fixes U as a set, and fixes the prime

ends of U . Then ϕ fixes U\U pointwise.

Proof If f : D → U is a uniformizing map, then f has a radial limit at ζ ∈ S1

iff the prime end f∗(ζ) ∈ P(U) is accessible; that is, if there is a Jordan arc
that lies in U except for one endpoint, and that intersects all but finitely many
crosscuts of some null-chain of f∗(ζ). The endpoints of this Jordan arc is called
an accessible point. It is known (see [30]) that the set of accessible points is
dense in U\U . But an automorphism which fixes all prime ends must fix all
accessible points, and therefore must fix U\U pointwise.
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3.2 Groups which stabilize a point

In this subsection we state the Thurston stability theorem, and from this deduce
information about the group of C1 homeomorphisms of R2 which stabilizes a
point.

The Thurston stability theorem is proved in [37]. Since many people will only
be familiar with the 1–dimensional version of this theorem, we indicate the idea
of the proof.

Theorem 3.2.1 (Thurston stability theorem) Let p be a point in a smooth

manifold Mn . Let G be a group of germs at p of C1 homeomorphisms of

Mn which fix p. Let L : G → GL(n,R) denote the natural homomorphism

obtained by linearizing G at p. Let L(G) denote the image of G, and K(G)
the kernel of L. Then K(G) is locally indicable.

Proof The idea of the proof is as follows. Let H < K(G) be a finitely gen-
erated subgroup, with generators h1, . . . hm . Let pi → p be some convergent
sequence. If we rescale the action near pi so that every hj moves points a
bounded distance, but some hk(i) moves points distance 1, then the rescaled
actions vary in a precompact family. It follows that we can extract a limiting
nontrivial action, which by construction will be an action by translations. In
particular, H is indicable, and K(G) is locally indicable.

Now we make this more precise. Change coordinates so that p is at the origin.
Then each generator hi can be expressed in local coordinates as a sum

hi(x) = x+ y(hi)(x)

where |y(hi)(x)| = o(x) and satisfies y(hi)
′|0 = 0. For each ǫ > 0, let Uǫ be an

open neighborhood of 0 on which |y(hi)
′| < ǫ and |y(hi)(x)| < |x|ǫ. Now, for

two indices i, j the composition has the form

hi ◦ hj(x) = x+ y(hj)(x) + y(hi)(x+ y(hj)(x))

= x+ y(hj)(x) + y(hi)(x) +O(ǫy(hj)(x)).

In particular, the composition deviates from x+ y(hi)(x) + y(hj)(x) by a term
which is small compared to max(y(hi)(x), y(hj)(x)).

Now, choose some sequence of points xi → 0. For each i define the map
vi : H → Rn where vi(h) = y(h)(xi). Let wi = supj≤m |vi(hj)|, and define
v′i(h) = vi/wi . It follows that the functions v′i are uniformly bounded on each
h ∈ H , and therefore there is some convergent subsequence. Moreover, by the
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estimate above, on this subsequence, the maps v′i converge to a homomorphism
v′ : H → Rn . On the other hand, by construction, there is some index j such
that |v′i(hj)| = 1. In particular, the homomorphism v′ is nontrivial, and H
surjects onto a nontrivial free abelian group, and we are done.

Lemma 3.2.2 Let G be a group of germs of orientation preserving C1 homeo-

morphisms of R2 at a fixed point p. Then G is circularly-orderable. Moreover,

if the image L(G) of G in GL+(2,R) obtained by linearizing the action at p is

left-orderable, then G itself is left-orderable.

Proof By the Thurston stability theorem, if L : G → L(G) denotes the ho-
momorphism onto the linear part of L(G), then the kernel K(G) is locally
indicable, and therefore by Theorem 2.1.11, K(G) is LO. That is, we have a
short exact sequence

0 −→ K(G) −→ G −→ L(G) −→ 0

where K(G) is LO. If the image L(G) is LO, then so is G by Lemma 2.1.9.

Moreover, since G is orientation preserving, L(G) < GL+(2,R) where GL+

denotes the subgroup of GL with positive determinant. There is a homomor-
phism from GL+(2,R) to SL(2,R) with kernel R+ . We write this as a short
exact sequence:

0 −→ R+ −→ GL+(2,R) −→ SL(1,R) −→ 0.

The group SL(2,R) double covers PSL(2,R), and can be thought of as the
group of orientation-preserving transformations of the connected double cover of
RP1 which are the pullback of projective transformations of RP1 by PSL(2,R).
In particular, SL(2,R) is a subgroup of Homeo+(S1), and is therefore CO. It
follows by Lemma 2.2.12 that GL+(2,R) is CO, and therefore so is L(G).

By another application of Lemma 2.2.12, G is CO.

3.3 Groups which stabilize one or more compact regions

The main point of this subsection is to prove Theorem 3.3.6, which says that a
group of C1 orientation-preserving homeomorphisms of the plane which fixes a
compact set K with connected complement is circularly-orderable, and a group
which fixes at least two such sets is left-orderable.

Now, suppose that a group G stabilizes the disjoint compact connected sets
K1,K2, . . . . For each Ki , exactly one complementary component is unbounded.
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So without loss of generality, we can fill in these bounded complementary regions
and assume G stabilizes disjoint compact connected sets K1, . . . with connected
complement for all i.

Remark 3.3.1 A compact set Ki which is an absolute neighborhood retract
satisfies the hypotheses of Alexander duality, and has connected complement
in R2 iff H1(Ki; Z) = 0. However, the well-known example of the “topologist’s
circle” shows that in general, the vanishing of homology is not sufficient to show
that the complement is connected.

We show how each region Ki gives rise to a CO group Gi which is naturally a
quotient of G.

Construction 3.3.2 If Ki consists of more that one point, the complement
of Ki in the sphere S2 = R2 ∪∞ is conformally a disk, and we let Gi denote
the image of G in Aut(P(S2\Ki)). Note that Gi is CO, by Lemma 3.1.3.

If Ki consists of a single point and G acts C1 near Ki , let Gi denote the germ
of G at Ki . By Lemma 3.2.2, Gi is CO, and is actually LO if the linear part
L(G) of G at Ki is LO.

Remark 3.3.3 Notice that there is a natural circular order on Gi in the first
case, but not in the second. However, in the second case, the Euler class of the
circular order provided by Lemma 3.2.2 is just the circular Euler class of the
linear part L(G) of G at Ki , acting projectively on the unit tangent bundle,
and is therefore natural.

In particular, the set Ki gives a homomorphism from G to a product

G −→
∏

i

Gi

of CO groups. The product of any number of left-orderable groups is left-
orderable. This follows immediately from Lemma 2.1.9 and Lemma 2.1.6. But
a product of CO groups is not necessarily CO. In this section we will show that
in the context above, if G stabilizes two disjoint compact connected sets K1,K2

with connected complement, then the groups G1, G2 are actually both LO.

Lemma 3.3.4 Let G act by C1 orientation-preserving homeomorphisms on

the plane. Suppose that G stabilizes two disjoint compact connected sets

K1,K2 with connected complement. Then the groups G1, G2 provided by Con-

struction 3.3.2 are circularly-orderable, and the pullback of their Euler classes

to G are zero.
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Proof First suppose K1 contains at least two points.

For a compact, connected set K1 ⊂ R2 with connected complement, the com-
plement of R2\K1 is homeomorphic to an annulus A1 . Let Ã1 denote the

universal cover of A1 , and denote by Ĝ1 the central extension of G1

0 −→ Z −→ Ĝ1 −→ G1 −→ 0.

This requires some explanation. The Riemann surface Ã1 is noncompact, and
topologically is an open disk. Under a uniformizing map, there is a unique point
p ∈ S1 such that every proper ray r in Ã1 which projects to an unbounded
proper ray in A1 is asymptotic to p. If we cut S1 at p, we get a copy of R,
which by abuse of notation we refer to as the set of prime ends P(Ã1)

Since by hypothesis K1 consists of more than one point, there is a natural
map P(Ã1) → P(S2\K1) which is just a covering map R → S1 under the
identification of P(S2\K1) with P(D) = S1 by a uniformizing map. Then

the group Ĝ1 is just the usual preimage of a subgroup of Homeo+(S1) in
Hõmeo

+
(S1).

In particular, the class of this extension is the Euler class of the circular ordering
on Gi . In order to show that the pullback of this Euler class to G is trivial,
it suffices to show that the restriction homomorphism res : G → Homeo+(A1)

lifts to the covering space r̂es : G→ Homeo+(Ã1).

Let K̂2 be a lift of K2 to Ã1 . Then for each element g ∈ G, there is a unique
lift r̂es : g → Homeo+(Ã1) which stabilizes K̂2 . By uniqueness, this defines the
desired section.

The case that K1 consists of a single point is very similar. The complement
R2\K1 is again an annulus, and there is A covering Ã1 → A1 . There is a
central extension

0 −→ Z −→ Ĝ1 −→ G1 −→ 0

where G1 is the germ of G at K1 , and Ĝ1 is the corresponding germ of the
preimage of G in Homeo+(Ã1). Again, choosing a lift K̂2 of K2 to Ã1 deter-

mines a unique section G → Homeo+(Ã1) whose germ is Ĝ1 . So the pullback
of the Euler class to G is trivial in this case too.

We now establish a technical lemma about groups which act in a C1 fashion
and have indiscrete fixed point set.

Lemma 3.3.5 Suppose G acts faithfully by C1 orientation-preserving home-

omorphisms of the plane, and suppose that the fixed point set fix(G) is not

discrete. Then G is left-orderable.
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Proof Let p ∈ fix(G) in the frontier of fix(G) be a limit point of distinct
pi ∈ fix(G). Then the pi contain a subsequence which approach p radially
along some vector v . It follows that the linearization of G at p, denoted L(G),
fixes the vector v , and therefore the image is contained in some conjugate of
the affine group of the line Aff+(R). The affine group of the line is an extension
of R by R:

0 −→ R −→ Aff+(R) −→ R −→ 0

where the homomorphism to R is given by the log of the dilation, and the
kernel is the subgroup of translations. It follows that Aff+(R) is left-orderable
by Lemma 2.1.9.

It follows from Lemma 3.2.2 that the germ of G at p is LO. In particular, if
H is any finitely-generated subgroup of G, then we can apply this reasoning
to a limit point in the frontier of fix(H) and see that the germ of H at this
limit point is left-orderable. In particular, H is LO–surjective. Since H was
arbitrary, by Theorem 2.1.11 the group G is LO as required.

We now have all the tools to prove the main result of this subsection:

Theorem 3.3.6 Let G act faithfully by C1 orientation-preserving homeomor-

phisms of the plane. Suppose that G stabilizes disjoint compact connected sets

{Ki} such that each Ki has connected complement. Then G is CO. If there is

more than one region Ki , then G is LO.

Proof By Lemma 3.3.4 there is a homomorphism

G −→ Gi

for each i, where the image group is CO, and the pullback of the Euler class of
this circular ordering to G is trivial if there is more than one region Ki .

Let K denote the kernel of this homomorphism. For each region Ki with
more than one point, Lemma 3.1.4 implies that K fixes ∂Ki pointwise. For
each region Ki consisting of a single point, every element of K fixes some
neighborhood of Ki pointwise. It follows that for each finitely-generated sub-
group H of K the set of fixed points of H is not isolated. In particular, by
Lemma 3.3.5, every finitely-generated subgroup of K is LO, and therefore K
is LO by Lemma 2.1.6.

By Lemma 2.2.12, G is CO. Moreover, the Euler class of this circular ordering
is the pullback of the Euler class of Gi under the homomorphism G → Gi . In
particular, if there is more than one region Ki , the Euler class of the circular
ordering on G is zero, and therefore G is LO, as claimed.
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3.4 Totally disconnected planar sets

If G acts faithfully on R2 and merely permutes a collection of disjoint compact
regions {Ki} we can study the image of G in the group of homotopy classes
of all orientation preserving homeomorphisms of R2 which permute the {Ki}.
We will call such a group a generalized braid group. The following construction
is a convenient simplification.

Construction 3.4.1 Suppose G acts faithfully on R2 and preserves some
bounded set K . Take the closure of K , fill in bounded complementary regions,
and label the components of the result as {Ki}.

Since the Ki are obtained naturally from K , G permutes the components
{Ki}. Observe that the union of the Ki is compact, and that the Ki are
disjoint, compact, and have connected complement. Then we can define an
equivalence relation on R2 by quotienting each Ki to a point.

Definition 3.4.2 A decomposition G of a space is a partition into compact
subsets. A decomposition is upper semi-continuous if for every decomposition
element ζ ∈ G and every open set U with ζ ⊂ U , there exists an open set
V ⊂ U with ζ ⊂ V such that every ζ ′ ∈ G with ζ ′ ∩ V 6= ∅ has ζ ′ ⊂ U . The
decomposition is monotone if its elements are connected.

It is clear that the equivalence relation in Construction 3.4.1 is monotone and
upper semi-continuous.

The following theorem is proved by R. L. Moore in [27]:

Theorem 3.4.3 (Moore) Let G be a monotone upper semi-continuous de-

composition of a topological sphere S such that no decomposition element sep-

arates S . Then the quotient space obtained by collapsing each decomposition

element to a point is a topological sphere.

Definition 3.4.4 Suppose G acts on a space X and preserves a monotone
equivalence relation ∼. Then the action of G descends to an action on X/ ∼.
We say the two actions are monotone equivalent.

Lemma 3.4.5 Let G act on R2 in such a way as to permute a union of disjoint

compact regions. Then this action is monotone equivalent to an action which

leaves invariant a compact, totally disconnected, G–invariant subset.
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Proof The fact that R2/ ∼ is homeomorphic to R2 follows from Moore’s
Theorem 3.4.3. Since Construction 3.4.1 is natural, the equivalence relation it
defines is G–invariant, and therefore the action of G descends to the quotient.
It is clear from the construction that C is totally disconnected.

Since G acts on R2 and permutes C , we can study a minimal subset of C ; that
is, a closed invariant nonempty subset of R2 which is minimal with respect to
these properties. Amongst all invariant subsets, a minimal subset C can be
characterized by the property that every G orbit contained in C is dense in C .
Such a subset will be either finite or perfect. Here, a set is perfect if every point
is a limit point.

The Moore–Kline theorem gives a useful “normal form” for totally disconnected
compact planar sets. This theorem is proved in [28]:

Theorem 3.4.6 (Moore, Kline) Let C be a totally disconnected compact set

in R2 . Then there is a homeomorphism of R2 to itself which takes C to a

closed subset of the arc [0, 1] contained in the x–axis.

We will use this theorem in the next subsection. Note that this theorem implies
that a perfect, totally disconnected subset of R2 is a tame Cantor set.

3.5 Generalized braid groups

Definition 3.5.1 For a surface S (possibly with boundary ∂S ) the rela-

tive orientation-preserving mapping class group, denoted MCG+(S, ∂S), is the
group of homotopy classes of orientation-preserving homeomorphisms of S to
itself which are fixed on ∂S . We generally just call this the mapping class group
for short.

Let C be a compact, totally disconnected subset of the open unit disk D .
Then the generalized braid group of C , denoted BC , is the relative mapping
class group MCG+(D\C, ∂D) and the planar generalized braid group of C ,
denoted B′

C , is the mapping class group MCG+(R2\C).

By extending a homeomorphism of D fixed on ∂D by the identity, we see
that there is a natural homomorphism BC → B′

C . This gives rise to a central
extension

0 −→ Z −→ BC −→ B′
C −→ 0
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where the generator of Z is the (positive) Dehn twist of D2 along a boundary
parallel loop.

If C is a finite set with n points, then Bn is the usual braid group, and B′
n is the

usual quotient of Bn by its center. A reference for the theory of braid groups,
with particular reference to questions of orderability or circular orderability, is
[8].

We come to the first main result of this paper.

The proof of this theorem follows the same general approach as Thurston’s
proof of the orderability of the usual (finitely-generated) braid groups [32], but
several technical complications arise because the surfaces D2\C and R2\C are
not of finite type.

Theorem A Let C be a compact, totally disconnected subset of the open

unit disk D . Then B′
C is circularly-orderable, and BC is left-orderable.

Proof If C consists of a single point, both groups are trivial. If C consists of
two points, B′

C = Z/2Z and BC = Z, so the theorem is satisfied in that case.
So without loss of generality we assume that C contains at least 3 points.

First we show that B′
C is circularly-orderable. Let S = S2\C . Then S is a

hyperbolic surface, and we can identify the universal cover S̃ = H2 . We work in
the unit disk model of H2 , so that S̃ can be compactified by adding the circle
at infinity S1

∞ . There is a short exact sequence

0 −→ π1(S) −→ M̂CG(S) −→ MCG(S) −→ 0.

Here M̂CG(S) denotes the group of homotopy classes of homeomorphisms of
S̃ which commute with the action of π1(S), and cover homeomorphisms of S .

It turns out that there is a naturally defined injective homomorphism σ from

the mapping class group MCG(R2\C) to M̂CG(S). We define σ as follows.
Let [φ] ∈ MCG(R2\C) denote a typical element, and let φ be a representative.
Then φ extends continuously to a homeomorphism φS of S which fixes the
point ∞. Choose a lift ∞̂ of ∞ in S̃ . Then there is a unique lift of φS to S̃
which fixes ∞̂; call this lift φeS . Then define σ by

σ([φ]) = [φeS ].

Since the construction of φeS depends continuously on φ, it follows that the
class [φeS ] is well-defined.
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We show that it is injective. If [φeS ] = [ψeS ] for some φ,ψ then there is a

homotopy ΨeS : S̃ × I → S̃ with ΨeS(·, 0) = ψeS and ΨeS(·, 1) = φeS which
at every point is π1(S) equivariant. It follows that ΨeS descends to a map
ΨS : S×I → S which is a homotopy between ψS and φS . Moreover, under the
track of this homotopy, the point ∞ moves in a homotopically inessential loop,
since by construction, this loop lifts to S̃ . So we can find another homotopy Ψ′

S ,
homotopic to ΨS , which fixes ∞. It follows that Ψ′

S restricts to Ψ: R2\C×I →
R2\C which is a homotopy from ψ to φ. This proves that the map is an
injection.

In fact, it is not hard to show that the map σ is actually an isomorphism, but
this is unnecessary for our purposes.

We now show that the group M̂CG(S) is circular. First of all we construct an

action of M̂CG(S) on a circularly-ordered set.

The conformal structure that S inherits as an open submanifold of R2 deter-
mines a natural complete hyperbolic structure on S . This gives an identification
of the universal cover S̃ with the hyperbolic plane H2 , which can be compacti-
fied by its ideal boundary which is a circle S1

∞ . An orientation on S determines
one on S̃ and therefore also on S1

∞ . Since the hyperbolic structure on S is com-
plete, the limit set Λ of π1(S) is the entire circle S1

∞ . A dense subset of S1
∞

consists of endpoints of axes of hyperbolic translations α ∈ π1(S). Notice that
since π1(S) is discrete, the stabilizer of a point in π1(S) is cyclic, so distinct
axes have distinct endpoints. Such endpoints are in bijective correspondence
with the set E whose elements are maximal hyperbolic cyclic subgroups 〈α〉
of π1(S) together with a choice of generator for H1(〈α〉; Z). It follows that E

inherits a circular order by its bijection with a subset of the circle S1
∞ .

The group M̂CG(S) induces an automorphism of π1(S) by conjugation, and
therefore induces an action on the set E . We verify that this action preserves
the cyclic order.

To see this, let α, β be hyperbolic elements of π1(S) with axes lα, lβ . Let [φ] ∈

M̂CG(S), and let φ be a representative. The images of the axes φ(lα), φ(lβ)
are periodic under the elements [φ]∗(α) = [φ]α[φ]−1 and [φ]∗(β) = [φ]β[φ]−1 in
π1(S) respectively, so they converge to well-defined end points in S1

∞ , which are
exactly the endpoints of the axes of l[φ]∗(α), l[φ]∗(β) . Moreover, they are either
disjoint or cross transversely in exactly one point, according to whether lα, lβ
are disjoint or cross transversely in exactly one point respectively. It follows
that lα, lβ cross iff l[φ]∗(α), l[φ]∗(β) cross. See Figure 1.
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Figure 1: The axes lα, lβ are disjoint iff their images under φ are disjoint. But this is

true iff the axes l[φ]∗(α), l[φ]∗(β) are disjoint. This defines a natural action of M̂CG(S)
on the circularly-ordered set of endpoints of axes.

The circular ordering on the endpoints of lα, lβ is determined by this crossing
information, the orientation of the axes, and if the axes do not intersect, the
relationship between the orientation of the axes and the orientation of the sub-
surface of S̃ that they both cobound. It follows that the circular order of the
endpoints of the lα, lβ is taken to the circular order of the endpoints of the

axes l[φ]∗(α), l[φ]∗(β) under [φ], and therefore the action of M̂CG(S) preserves
the circular order on E .

It remains to show this action is faithful. One way to do this is to find a
maximal collection of pairwise disjoint geodesic loops Γ = {γi} in S . We want
to be slightly careful about the choice of Γ; we want it to be maximal, and also
closed as a subset of S . In particular, the geodesics γi should not accumulate.
We show how to choose such a collection.

By the Moore–Kline Theorem 3.4.6 we can assume, after a homeomorphism of
R2 , that the set C is contained as a closed, totally disconnected subset of a
horizontal arc I in the x–axis. In particular, the complement I\C consists of
a countable collection of open intervals Ii . For each connected complementary
open interval Ii we let pi denote the midpoint. We inductively produce a
maximal set of round circles Sk which are symmetric in the x–axis, and intersect
the x axis in points pi, pj subject to the constraint that the circles are non-
intersecting, and the kth circle is chosen to be the biggest circle with diameter
≤ 2−k . Note that a maximal collection of such circles has the property that
each complementary domain contains at most finitely many unmatched pi .

Our initial guess for Γ is the set of geodesics isotopic to Si . Note that some Si

might be boundary parallel; we throw these out and just look at the ones with
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geodesic representatives. This is not quite maximal, but each complementary
region is of finite type, and there are only finitely many complementary regions
whose diameter (in the Euclidean metric in R2 ) is > ǫ for any ǫ. So we just
take a maximal (finite) collection of geodesic loops in each such complementary
region, and add these loops to Γ. Notice that this union of geodesic loops is
closed, doesn’t accumulate anywhere (in S ) and is maximal.

Now, by hypothesis, [φ] preserves every hyperbolic cyclic subgroup 〈α〉 of
π1(S); in particular, the projection φS of a representative φ to S preserves
every oriented free homotopy class of loop which is not boundary parallel. So
the collection Γ is taken to a collection of curves which are curvewise isotopic
to Γ. By straightening these geodesics inductively, we can homotope φS to φ′S
which fixes Γ pointwise. Since Γ was maximal, every complementary surface to
Γ is either a thrice punctured sphere, a twice punctured disk, a once punctured
annulus, or a pair of pants. An automorphism of one of these subsurfaces which
preserves every hyperbolic cyclic subgroup is isotopic to the identity, so φS is
actually isotopic to the identity, and therefore [φ] is in π1(S). Now, an element
of π1(S) which, under conjugation, takes a hyperbolic cyclic subgroup to itself
in an orientation preserving way must actually commute with that subgroup.
But this contradicts the fact that π1(S) is nonelementary.

The conclusion is that M̂CG(S) acts faithfully in an order preserving way on

a circularly-ordered set, and therefore M̂CG(S) is circularly-ordered, by The-

orem 2.2.14. Since σ : B′
C → M̂CG(S) is injective, B′

C is circularly-ordered
too.

Proving that BC is left-orderable is similar; let p ∈ R2\D be some point.
Define S to be obtained from R2\(C ∪ p) by adding a point to compactify
R2 , and then removing (C ∪ p). Exactly as in the previous case, there is an

injective homomorphism from BC to M̂CG(S), and an invariant circular order

on M̂CG(S). Moreover, the image of BC stabilizes the parabolic subgroup
corresponding to a small loop around p, since representatives of BC act trivially
there. In particular, the image of BC stabilizes a point in S1

∞ , and therefore it
is left-orderable, as required.

3.6 Groups with bounded orbits

We are now in a position to prove the following:

Theorem B Let G be a group of orientation preserving C1 homeomorphisms

of R2 with a bounded orbit. Then G is circularly-orderable.
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Proof Let p be a point with a bounded orbit, and consider the closure of the
orbit of p. This is a compact union of disjoint compact components which is
permuted by G.

We apply Construction 3.4.1 to fill in the sets with disconnected complement to
get a new collection of connected sets {Ki} which are compact with connected
complements, whose union is compact, and whose components are permuted
by G. We then apply Lemma 3.4.5 to get a monotone equivalent action of G
on R2 which leaves invariant a totally disconnected compact set C .

By theorem A, the image of G in the mapping class group of R2\C is circularly-
orderable. Denote the kernel by K . Then K fixes C pointwise, and therefore
with respect to the original action, K preserves the components {Ki} compo-
nentwise.

By Theorem 3.3.6, K is circularly-orderable, and is left-orderable if there are
at least two components of Ki . If there is only one component Ki , the quotient
C is a single point, and the mapping class group of R2\C is trivial, in which
case G = K . So either G is circularly-orderable, or else it maps to a circularly-
orderable group with left-orderable kernel. By Lemma 2.2.12, G is circularly-
orderable, as claimed.

4 The Euler class and smoothness

The purpose of this section is to give a complete classification of which Euler
classes can arise for orientation-preserving actions of oriented surface groups on
R2 in every degree of smoothness.

One main result is that the Euler class of the group of C∞ orientation-preser-
ving diffeomorphisms of the plane is an unbounded class, in stark contrast with
the case of Homeo+(S1) and the Milnor–Wood inequality. In particular, if S
is a closed surface of genus at least 2, there is a C∞ action of π1(S) on the
plane with arbitrary Euler class. The other main result is that the genus one
case is more rigid: we show that an orientation-preserving C1 action of Z ⊕ Z

on the plane has vanishing Euler class.

Using these facts, we prove the existence of a finitely-generated torsion-free
group of homeomorphisms of the plane which is not circularly-orderable.
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4.1 The Euler class and winding number

We give two descriptions of the Euler class of a group G acting on R2 by a
representation ρ : G→ Homeo+(R2). The first description is more algebraic.

Construction 4.1.1 Let G∞ denote the germ of G at ∞. Let A be a punc-
tured disk neighborhood of ∞, and let Ã be the universal cover of A. Then
there is a central extension

0 −→ Z −→ Ĝ∞ −→ G∞ −→ 0

where Ĝ∞ denotes the subgroup of periodic germs of homeomorphisms of Ã.
The class of this extension pulls back by the natural restriction homomorphism
G→ G∞ to give the Euler class ρ∗[e] ∈ H2(G; Z).

To see that this is the Euler class, observe that it defines a non-split extension,
and therefore determines a non-trivial element of H2(Homeo+(R2); Z). By
evaluating this class on some suitable homology cycles (e.g. Example 4.2.1 in
the sequel) one sees that it is a primitive element, and therefore it is equal to
the generator of H2(Homeo+(R2); Z), as claimed.

The next description is geometric, in terms of a winding number. Notice that
for this definition to make sense, we must assume the action is at least C1 .

Construction 4.1.2 Now we give a more geometric construction of the Euler
class, in terms of how it pairs with elements of H2(G; Z). Assume the action is
at least C1 . It is a fact that for any group G, an integral class σ ∈ H2(G; Z)
can be realized as the image of a map from a closed orientable surface S of
genus ≥ 1 into a K(G, 1)

f : S −→ K(G, 1).

Given a representation ρ, we get an induced action

ρ : π1(S) −→ Homeo+(R2).

Let g be the genus of S , and suppose that we obtain S by gluing the sides
of a 4g–sided polygon Pg in pairs in the usual way. Let dρ : S̃ → R2 be an
equivariant C1 map, called a developing map and look at the restriction

dρ : ∂Pg −→ R2

where Pg now denotes a fundamental domain, by abuse of notation. If neces-
sary, we can assume that dρ is an immersion on edges of ∂Pg .
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Let δ : S1 → R2 be obtained from dρ by smoothing the corners at each vertex
of ∂Pg . Then the Euler class of ρ, evaluated on [S], can be calculated by the
formula

ρ∗([e])([S]) = index(δ) + 1 − 2g

where index(δ) denotes the usual winding number of the tangent vector Tδ
around S1 . See Figure 2 for an example of a hypothetical action of Z⊕Z with
Euler number 1. In the figure, α, β denote generators of Z ⊕ Z.

pα(p)

β(p)

βα(p)

δ

τ

σ

β(τ)

α−1(σ)

Figure 2: This hypothetical action of Z⊕Z satisfies index(δ) = 2, so ρ∗([e])([Σ]) = 1.

In practice we would like to work with developing maps which are as degenerate
as possible, in order to reduce the combinatorial complexity of the calculation.
So to calculate the “correct” smoothing along a degenerate edge, we must per-
turb the picture near a degenerate edge in an equivariant way; i.e. the pertur-
bations must be combinatorially equivalent along degenerate edges which are
paired by the edge pairing translations.

The justification for this formula is as follows. Associated to a representation
ρ : G → Homeo+(R2) there is an associated foliated R2 bundle Eρ over BG.
Here BG is the classifying space for G as a discrete group; that is, it is a
K(G, 1). It is defined as the quotient of the product R2 ×EG by the action of
G, where EG is the universal cover of BG, and

γ(p, q) = (ρ(γ)(p), γ(q))

By basic obstruction theory, the Euler class ρ∗([e]) is the obstruction to triv-
ializing Eρ as an R2 bundle over the 2–skeleton of BG. See for example [16]
for details.

If Σ is a closed, orientable surface of genus g , and G = π1(Σ), then BG = Σ.
Since R2 is contractible, we can always find a section σ : Σ → Eρ of Eρ over
Σ.
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Suppose ρ is C1 . Then Eρ is naturally a C1 manifold, and we can choose σ
to be smooth. The pullback of the unit tangent bundle in the fiber direction by
σ defines an orientable circle bundle E′

ρ over Σ. A trivialization of E′
ρ defines

a trivialization of Eρ by exponentiation, and conversely, a (smooth) trivializa-
tion of Eρ defines a trivialization of Eρ by restriction. Since Diffeo+(R2) and
Homeo+(R2) are homotopic as topological groups, Eρ can be trivialized iff it
can be smoothly trivialized.

It follows that the Euler class of ρ is the Euler class of the circle bundle E′
ρ .

The section σ defines a developing map dρ . If necessary, perturb dρ to be
an immersion on each edge of Pg . This immersion gives a trivialization of E′

ρ

along the pushoff (into Pg ) of each edge of ∂Pg . This trivialization on either
side of an edge of the 1–skeleton disagrees along the edge, and therefore the
trivialization can be extended across each edge of the 1–skeleton of S with a
single saddle singularity, and across the vertex with a single sink singularity.
This section extends non-singularly over a fundamental domain Pg iff the index
of the smoothed curve dρ(δ) is 0. It follows that the Euler class, evaluated on
Σ, is index(δ) + 1 − 2g . The formula follows.

See Figure 3 for a picture of the trivialization in a neighborhood of a typical
edge and vertex in the genus 2 case.

Figure 3: The trivialization can be extended over each edge with a saddle singularity,
and over the vertex with a sink singularity.

4.2 Unboundedness of the Euler class

In this subsection we construct C∞ actions on the plane of π1(S), where S is
the closed surface of genus 2, with arbitrary Euler class.

We begin with the following example, due to Bestvina:
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Example 4.2.1 (Bestvina) Let Ci be the round circle in R2 centered at
the origin, with radius 2i , for i ∈ Z. That is, the Ci are a bi-infinite nested
sequence of circles about 0. Let α be the composition of a positive Dehn twist
in each circle Ci .

More precisely, let Ai be the annulus whose boundary components are the circle
of radius 0.99 × 2i and the circle of radius 1.01 × 2i . Let ψ : [0, 1] → [0, 1] be
a smooth homeomorphism, infinitely tangent to a constant map at 0 and 1.
Then let α be the identity outside the disjoint union of the Ai , and let its
restriction to the circle of radius (0.99 + t × 0.02) × 2i be a rotation through
angle 2πψ(t) for t ∈ [0, 1]. In particular, note that α is smooth away from the
origin.

Let β be the dilation centered at 0 sending z → 2z . Then the commutator
[α, β] = Id, and it is easy to see that

〈α, β〉 ∼= Z ⊕ Z.

On the other hand, the image of the boundary of the polygon ∂P1 under dρ from
Construction 4.1.2 is isotopic to the configuration in Figure 2. In particular,
the Euler number of this Z ⊕ Z action is 1.

If Gi is a subgroup of Z ⊕ Z of index i, then Gi is also isomorphic to Z ⊕ Z,
and the induced action has Euler number i. In particular, the Euler class
[e] ∈ H2(Homeo+(R2); Z) is unbounded.

The action of Z ⊕ Z is not C1 at the origin. Bestvina posed the question
of whether the Euler class was unbounded for C1 actions. We show that the
answer to this question is positive, and in fact show that the Euler class is
unbounded for C∞ actions.

Theorem C For each integer i, there is a C∞ action

ρi : π1(S) → Diffeo+(R2)

where S denotes the closed surface of genus 2, satisfying

ρ∗i ([e])([S]) = i.

In particular, the Euler class [e] ∈ H2(Diffeo+(R2); Z) is unbounded.

Proof As in Example 4.2.1, let Cj be the round circle in R2 with radius 2j

centered at the origin. Let α be the composition of a positive Dehn twist
in each circle Cj for j ≥ 0, and let β be the dilation centered at 0 sending
z → 2z . Then α, β are both C∞ , and the commutator [αi, β] is the ith power
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of a positive Dehn twist in the circle C0 . Now let Dj be the round circle in
R2 with radius 1 centered at the point with x coordinate 3j and y coordinate
0. Note that C0 = D0 . Let γ be the composition of a positive Dehn twist in
each circle Dj for j ≥ 0, and let δ be the translation parallel to the x–axis
through distance 3. Then γ, δ are both C∞ , and the commutator [γi, δ] is the
ith power of a positive Dehn twist in the circle D0 . It follows that the there is
an identity

[αi, β] = [γi, δ]

and the group generated by αi, β, γi, δ is a quotient of π1(S) for S the closed
surface of genus 2.

We calculate the Euler class of this action. One method is to find a polygon P2

and a developing map dρ : ∂P2 → R2 which is smoothed to δ : ∂P2 → R2 with
index(δ) = 3 + i. It follows by Construction 4.1.2 that

ρ∗i ([e])([S]) = 3 + i+ 1 − 2g = i.

This is left as a pleasant exercise for the reader.

Alternatively, we can use Construction 4.1.1 to evaluate the Euler class. Since
the commutators [αi, β] and [γi, δ] have compact support, their images in the
group of germs at infinity are trivial. It follows that in the group of germs, the
genus 2 surface group breaks up into two genus 1 surface groups. The first
Z ⊕ Z has Euler class i, as in Bestvina’s example. The group generated by γi

and δ fixes the negative x–axis. It follows that we can find a section of the
universal central extension by choosing a lift which fixes a lift of the germ at
infinity of the negative x–axis. In particular, the extension splits, and the Euler
class on the second Z ⊕ Z is trivial.

Theorem C raises the following natural question:

Question 4.2.2 Is the Euler class a bounded class on the group of real analytic

orientation-preserving diffeomorphisms of R2?

Some weak evidence for a positive answer to this question is the following:

Theorem 4.2.3 The group Poly+(R2) of polynomial orientation-preserving

homeomorphisms is circularly-orderable.

Proof Let r0 be the positive real axis, and let R denote the set of germs
at infinity of translates of r0 by orientation-preserving polynomial homeomor-
phisms. Observe that R contains the germs at infinity of every straight ray. It
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turns out that R is a naturally circularly-ordered set. To see this, observe that
if α : R2 → R2 is a polynomial homeomorphism, then α(r0) is real algebraic,
and therefore its germ at infinity is either equal to the germ at infinity of r0 , or
is disjoint from it. If {ri} are a finite collection of disjoint, properly embedded
rays in R2 , then they are naturally circularly-ordered as follows. Let D be a
large closed disk whose boundary intersects the ri transversely. For each ri , the
intersection ri∩∂D is a finite set. This set inherits a natural ordering from the
orientation on ri . For each i, let pi be the greatest element of this set. Then
the rays ri are circularly-ordered by the circular ordering of the pi in ∂D . One
can verify that this ordering is independent of the choice of (sufficiently large)
D , and therefore defines a circular ordering on the germs at infinity of the ri .

Now, a polynomial homeomorphism of R2 which preserves the germ at infinity
of a straight line must preserve the entire line as a set. Moreover, any homeo-
morphism of R2 which preserves every straight line as a set must be the identity.
It follows that the natural homomorphism Poly+(R2) → Aut(R) is injective.
By Theorem 2.2.15, Poly+(R2) is circularly-orderable.

4.3 Torsion-free groups which are not left-orderable

In this section we construct groups of orientation-preserving homeomorphisms
of the plane which are not left-orderable. Of course, there are some very simple
examples of such groups: any finite cyclic group acts on the plane by rotations,
but the only finite left-orderable group is the trivial group. Benson Farb asked
whether there are any examples of torsion-free groups which act on the plane
but are not left or circularly-orderable. In this section, we construct an explicit
example of such a group which is not left-orderable. In the next section, we
show how to promote this example to show the existence of a finitely presented
torsion-free subgroup of Homeo+(R2) which is not circularly-orderable.

Theorem 4.3.1 There is a finitely presented torsion-free C∞ subgroup of

Diffeo+(R2) which is not left-orderable.

Proof Let G be given by the following presentation:

G = 〈a, b, c, t | a2 = t, b3 = t, c7 = t, abc = t3〉.

Then G is the fundamental group of the Seifert fibered space

M = (Oo0 | 3; (2, 1), (3, 1), (7, 1))
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in the notation of Montesinos [26]. In particular, this is a 3–manifold with
˜SL(2,R) geometry, so M̃ is homeomorphic to R3 , and G is torsion-free.

On the other hand, π1(M) is not left-orderable, and in fact admits no nontrivial
homomorphism to Homeo+(R). A more general fact is proved in [31], but it
is easy enough to give a direct proof in our case. Suppose G is left-orderable,
so that we can disjointly decompose G = P ∪ N ∪ Id with P · P ⊂ P and
P−1 = N , by Lemma 2.1.2. Without loss of generality, we can assume t ∈ P .
Then since t is a nontrivial positive power of each of the generators a, b, c we
must have a, b, c ∈ P and also a, b, c < t. But then abc < t3 contradicting the
fourth relation.

On the other hand, since t is central, we can form the quotient ∆ of G by 〈t〉
with the presentation

∆ = 〈a, b, c | a2 = b3 = c7 = abc = Id〉

so that there is a short exact sequence

0 → Z → G→ ∆ → 0.

Now, the group ∆ acts faithfully and discretely on R2 by C∞ homeomorphisms.
To see this, observe e.g. by van Kampen’s theorem that ∆ is the fundamen-
tal group of the hyperbolic (2, 3, 7) triangle orbifold, and therefore admits a
(unique up to conjugacy and orientation) discrete faithful representation into
PSL(2,R) = Isom+(H2). So after choosing a diffeomorphism of H2 → R2 , we
obtain a representation ρ : ∆ → Diffeo+(R2). We will construct a monotone
equivalent (smooth) faithful action of G. Since ρ(∆) is discrete, and the set
of points with nontrivial stabilizer in ∆ are discrete, we let O be the orbit
of a point with trivial stabilizer in ∆, and choose a diffeomorphism of R2\O
with R2\X where X is the union of infinitely many nowhere accumulating
disjoint closed disks. Let ρ′ : G → Diffeo+(R2\X) be the pushforward of the
representation ρ under this diffeomorphism. We extend this action over X in
the following way. Since the components of X are permuted by ∆ with trivial
stabilizer, we can identify X = ∆ ×D where D denotes the closed unit disk.
Now let the kernel 〈t〉 of ρ act on D by some smooth diffeomorphism which is
fixed in a collar neighborhood of the boundary and has infinite order, and take
the product action on ∆×D . This product action is smooth, and since t acts
trivially on R2\X , it is smooth on all of R2 . This defines an extension of ρ′ to
all of R2 which is smooth and faithful.

Remark 4.3.2 In [31], it is actually proved that every action of the funda-
mental group of an exceptional Seifert fibered space M on R is equivalent to
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the action of π1(M) on the space of leaves of some taut foliation of M trans-
verse to the circle fibration. By the Milnor–Wood inequality, such a foliation
can only exist if the Euler class of the bundle is smaller in absolute value than
the Euler characteristic of the base orbifold, which is a sphere with three ex-
ceptional fibers. In particular, for any such base orbifold, there are infinitely
many Seifert fibered spaces, but only finitely many whose fundamental groups
are left-orderable. On the other hand, by more or less repeating the construc-
tion in Theorem 4.3.1, one can see that the fundamental group of every Seifert
fibered 3–manifold with infinite fundamental group admits a faithful C∞ repre-
sentation in Diffeo+(R2). Every such group is torsion-free. On the other hand,
all of these groups are circularly-orderable, and contain finite index subgroups
which are left-orderable.

4.4 Torsion-free groups which are not circularly-orderable

In this subsection we show that we can combine theorem C with the ex-
ample from Theorem 4.3.1 to give an example of a torsion-free subgroup of
Homeo+(R2) which is not circularly-orderable, thereby giving a complete posi-
tive answer to Farb’s question. At one point, we make use of a powerful theorem
of Tsuboi ([39]) about the homology of the group of C1 homeomorphisms of
Rn , but aside from this, our construction is basically elementary.

The use of Tsuboi’s theorem is not logically essential; one could avoid it by an
explicit construction. But such a construction would add considerably to the
length of the example, without being any more enlightening.

Our proof follows the model of an argument due to Ghys [13] which shows
that there exist planar groups which are not circularly-orderable, using Exam-
ple 4.2.1, and the fact that Homeo+(R2) contains torsion elements.

First we prove a couple of lemmas.

Lemma 4.4.1 Let G be the group from Theorem 4.3.1. Then if ρ : G →
Homeo+(S1) is a homomorphism for which ρ(t) has a fixed point, ρ is monotone

equivalent to an action which factors through ∆ = G/〈t〉. Moreover, ρ is either

trivial, or is semi-conjugate to the “standard” hyperbolic action coming from a

faithful representation of ∆ in PSL(2,R).

Proof Let T ⊂ S1 be the fixed point set of ρ(t). By blowing up the orbit of
some p ∈ T , we can assume that T has nonempty interior. Since t is central, the
subset T is permuted by ρ(G), so we can blow down S1\T to get a monotone
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equivalent action on which t acts trivially, so up to monotone equivalence, the
action factors through ∆ = G/〈t〉, as claimed.

Now, it is well-known that every homomorphism of ∆ to Homeo+(S1) is either
trivial, or monotone equivalent to a hyperbolic action. See [5] for a proof, which
makes use of a theorem of Matsumoto [23].

Lemma 4.4.2 Let Diffeo+
c (R2) denote the group of diffeomorphisms of R2

with compact support. There is a finitely-generated subgroup L of Diffeo+
c (R2)

containing an element t which is both a commutator in L, and conjugate to its

square in L.

Proof Such subgroups are very easy to find. For example, let φ : R2 → D2

be a diffeomorphism such that ‖φ′‖ decays very fast at infinity, and let t be
the pushforward by φ of a translation. Then t is certainly both a commutator,
and conjugate to its square. To see that t is a commutator, observe that the
commutator of two dilations with distinct centers is a translation. Moreover,
a dilation with dilation constant 2 conjugates a translation to its square. If
‖φ′‖ decays sufficiently quickly (for instance, exponential decay is sufficient)
the pushforward of any element of L to D2 is C∞ tangent to the identity
along ∂D2 .

With these lemmas proved, we can now give a positive answer to Farb’s ques-
tion.

Theorem 4.4.3 There exists a finitely-generated, torsion-free subgroup of

Homeo+(R2) which is not circularly-orderable.

Proof Let G be the example from Theorem 4.3.1. By abuse of notation, we
will actually think of G as a subgroup of Diffeo+(R2). We use the same notation
for the generators of G. By construction, the support of t is a nonaccumulating
union of closed disks ∆×D . Moreover, the action of t on 1×D can be chosen
to be arbitrary, and the action on each other translate g × D is conjugate to
the action on 1×D . By Lemma 4.4.2, we can insist that the restriction of t to
1 ×D has the following properties:

• There are diffeomorphisms r, s whose commutator satisfies [r, s] = t.

• There is a diffeomorphism q such that qtq−1 = t2 .
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Moreover, we can choose q, r, s to have support equal to ∆×D , and further we
can insist that the action on each translate g×D is conjugate to the action on
1×D . Let L denote the group generated by q, r, s, t. Note that L is abstractly
isomorphic to the group of the same name constructed in Lemma 4.4.2. Define

G′ = 〈G,L〉

Then by construction, G′ maps surjectively onto ∆ with kernel L, and is
torsion-free.

Now, if ρ′ : G′ → Homeo+(S1) is a homomorphism, then ρ′(t) is conjugate in
Homeo+(S1) to ρ′(t2). In particular, the rotation number of ρ′(t) satisfies

rot(ρ′(t)) = rot(ρ′(t2)) = 2rot(ρ′(t))

and therefore this rotation number is equal to 0, and ρ′(t) has a fixed point.
For the definition and properties of rotation number, see [5].

It follows by Lemma 4.4.1 that up to monotone equivalence, ρ′|G is equivalent to
the standard action of the fundamental group of the (2, 3, 7) hyperbolic triangle
orbifold on its circle at infinity.

The group G contains a subgroup H of index 168 corresponding to a congru-
ence cover of the (2, 3, 7) hyperbolic triangle orbifold. See for instance [19] for
details. Since G is a Z extension of the orbifold group, the subgroup H is a
Z extension of the fundamental group of a closed surface Σ of genus 3. By
passing to covers in the base direction, for arbitrarily large m, we can find a
subgroup Hm of H of index m which is a Z extension of the fundamental
group of a closed surface Σm of genus 2m+1. The Euler class of the extension
corresponding to H evaluated on the fundamental class of the genus 3 surface is
some number a, and therefore the Euler number of the extension corresponding
to Hm is ma.

So there are elements

α1,m, β1,m, . . . , α2m+1,m, β2m+1,m ∈ G

which map to standard generators of a surface group of genus 2m + 1 under
the homomorphism to ∆, such that

∏

i

[αi,m, βi,m] = tma.

Now, [qnrq−n, qnsq−n] = t2
n

, so for each m, we can express tma as a product of
approximately logma commutators of this form. Together with the αi,m, βi,m ,
we can produce surface subgroups Sm of G′ of genus approximately 2m +
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2 logma. We know that the action of αi,m, βi,m on S1 is “standard”, up to
semi-conjugacy. So by the Milnor–Wood inequality Theorem 2.4.2 and the fact
that the restriction of ρ′ to Hm is standard, we can estimate the circular Euler
class

(ρ′)∗([e])[Sm] ≤ −4m+ 4 logma

which is as negative as we like for big m. Here the −4m term comes from
the standard action of Hm , and the 4 logma term comes from Milnor–Wood.
Moreover, since r, s have support contained in the union of the disks ∆ ×D ,
the formula from Construction 4.1.2 implies that the planar Euler class of Sm

is −4m, since we can choose a fundamental domain to calculate the Euler class
which does not intersect the support of r, s.

Now, by a theorem of Tsuboi, the homology of the group of C1 orientation-
preserving diffeomorphisms of R2 is equal to Z in dimension 2; see [40] and
[39]. Let F2 denote the fundamental group of a surface of genus 2. Let
ρ−4m be the representation constructed in theorem C with i = −4m. Then
ρ−4m(F2) and Sm are homologous as subgroups of the group of C1 orientation-
preserving homeomorphisms of R2 . By vanishing of the oriented cobordism
group in dimension 3, we can take this homology to be an oriented 3–manifold.
That is, there is a 3–manifold M with two boundary components, ∂(M) =
∂1(M) ∪ ∂2(M), where ∂1(M) has genus 2 and ∂2(M) has genus approxi-
mately 2m + 2 logma, and a C1 representation σM : π1(M) → Homeo+(R2)
where σM |∂1(M) is conjugate to ρ−4m|F2 , and σM |∂2(M) is conjugate to the ac-
tion of Sm . In fact, C1 is superfluous for our application: it suffices that each
element of σM (π1(M)) is C1 on an open dense subset. Such a homology can be
constructed by more elementary methods, since the boundary representation is
C∞ .

We can find an oriented irreducible 3–manifold N with torsion-free fundamental
group, and a degree 1 map ϕ : N → M which is a homeomorphism on the
boundary. Then σM induces a C1 representation σN : π1(N) → Homeo+(R2)
with the same boundary behaviour. It follows that σN extends to a C1 action
of the amalgamated free product

G′′ = G′ ∗Sm
π1(N)

which is faithful on the subgroup G′ . Let σ : G′′ → Homeo+(R2) denote the
homomorphism defining this action. Note that G′′ is torsion-free, but we do
not yet know that σ is faithful, and therefore we don’t know that σ(G′′) is
torsion-free.

Let K be the kernel of σ . Build a space X from a K(G′, 1) and from N by
gluing along subsurfaces representing the subgroups Sm . Let X̂ be the cover
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of X corresponding to K . Since σ is injective on G′ , X̂ is obtained from
copies of the cover N̂ of N where π1(N̂ ) = K ∩ π1(N), glued along disks in
copies of the universal cover of K(G′, 1). But the universal cover of a K(π, 1)
is contractible, so X̂ is homotopic to a 3–manifold, obtained from copies of N̂
of N by attaching 1–handles. In particular, K is the fundamental group of an
irreducible 3–manifold. It follows that every finitely-generated subgroup of K is
the fundamental group of a compact irreducible 3–manifold with boundary, by
the Scott core theorem (see [15]). As [1] observed, every compact irreducible 3–
manifold with boundary has locally indicable fundamental group, and therefore
by Theorem 2.1.11, has LO fundamental group. Since K is locally LO, it is
LO, by Lemma 2.1.6. We now show how to modify σ to make it faithful.

Pick a point p, and blow up its orbit. That is, replace each translate g(p) of
p by a closed disk Dg in such a way that the diameters of these disks in any
compact region go to zero. Since σ is C1 at p, we can extend the action of
G′′ on R2\G′′(p) to the boundary circle ∂Dg by the projective linear action
on the unit tangent bundle UTg(p)R

2 . Let G′′
p be the stabilizer of p in G′′ .

Then σ(G′′
p) is circularly-orderable, and the stabilizer of ∂Dg in σ(G′′

p) is left-
orderable, by Lemma 3.2.2. Let Kp be the stabilizer of ∂Dg in G′′

p , so that
σ(Kp) is the stabilizer of ∂Dg in σ(G′′

p). Since K is left-orderable, and σ(Kp)
is left-orderable, it follows that Kp is left-orderable by Lemma 2.1.9, and G′′

p

is circularly-orderable, by Lemma 2.2.12. We can insert a faithful action of
G′′

p on Dg by thinking of Dg as the cone on S1 , and coning the (positive)
projectivized linear action of G′′

p on S1 by a faithful action of Kp on I , which
exists by Theorem 2.2.14. We can then translate this action to the other disks
Dh . The resulting action defines a faithful representation σ′ . Notice that even
though σ′ is only C0 , we could not perform the blow-up without knowing that
σ was C1 at p. So σ′ exhibits G′′ as a torsion-free subgroup of Homeo+(R2).

If there were a representation ρ′′ : G′′ → Homeo+(S1) extending ρ′ , then the
circular Euler class of ρ−4m(F2) would be equal to the circular Euler class of
Sm , which as we calculated before, is ≤ −4m+ 4 logma, violating the Milnor–
Wood inequality (Theorem 2.4.2). This contradiction shows that ρ′′ cannot
exist, and G′′ is not circularly-orderable, as claimed.

Remark 4.4.4 Notice that in order to find a C∞ example, one just needs to
find a torsion-free C∞ homology from Sm to ρ−4m(F2). Such a homology can
actually be constructed by hand, but the construction is somewhat complicated
and unenlightening, so we do not include it here.
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4.5 Homological rigidity for Z ⊕ Z actions

In the remainder of the paper, we will show, in contrast to theorem C, and
Example 4.2.1 that for C1 actions of Z ⊕ Z, the Euler class always vanishes.

We do this by studying the possible dynamics of two commuting C1 homeo-
morphisms α, β , examining the cases based on the dynamics of β on the fix
point set of α.

First we treat the case that α has a fixed point whose orbit under β is not
proper.

Lemma 4.5.1 Let ρ : Z ⊕ Z → Homeo+(R2) be C1 , and suppose that p has

nontrivial stabilizer. If p is fixed by a finite index subgroup, or has an indiscrete

orbit, then ρ∗([e]) is trivial.

Proof Suppose the stabilizer of p is a finite index subgroup. Since any finite
index subgroup of Z ⊕ Z is isomorphic to Z ⊕ Z, and since the Euler class
is multiplicative under covers, it suffices to assume that p is a global fixed
point. In this case the Euler class of the planar action is equal to the Euler
class of the (projective) action on the unit tangent bundle at p obtained by
linearizing. To see this, use Construction 4.1.2 for a constant developing map.
In particular, the Euler class is pulled back from an action on S1 , and therefore
by the Milnor–Wood inequality, the Euler class vanishes.

If p is fixed by some element α, then after passing to a finite index subgroup,
we can assume α is a generator. Fix some other generator β and let pi = βi(p).
Suppose {pi} is indiscrete and contains some subsequence which accumulates
at q , which is fixed by α. Some subsequence approaches q radially along some
tangent vector v . Since the action is C1 , it follows that α fixes q and dα fixes
v .

Let pi, pj be very close to q , and let τ be an arc joining pi to pj so that τ ′(t)
is nearly parallel to v for all t ∈ τ , and dβj−iτ ′(0) = τ ′(1). Then dατ ′(0) is
very close to τ ′(0), and since α and β commute, dατ ′(1) is very close to τ ′(1).
Moreover, near q , α is very close in the C1 topology to a linear transforma-
tion. So, since dα almost fixes τ ′(0) and τ ′(1), either these vectors are almost
parallel, in which case we can take τ very close to a radial straight arc, or else
dα is very close to the identity. In either case, for our choice of τ , the arc α(τ)
is very close in the C1 topology to τ . We pass to the finite index subgroup
generated by α and βi−j . Again, since the Euler class is multiplicative under
covers, it suffices to show that it vanishes in this case. We let τ ∪ α(τ) be the
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image of ∂P1 (where P1 is a fundamental domain for our new copy of Z ⊕ Z)
under a “degenerate” developing map dρ as in Construction 4.1.2. Then by
our geometric reasoning, the index is 1, and the Euler class, evaluated on the
fundamental class of Z ⊕ Z, is 1 + 1 − 2 = 0, as claimed.

4.6 The Alexander series of ρ

In this section we prove that if α fixes some point p, then if there exists τ
from p to β(p) which has algebraic intersection number zero with its translates
βi(τ), then the Euler class is zero. An individual treatment of this case is
not logically necessary for the proof of theorem D, but it does make subsequent
sections easier to understand. Throughout this section and the next, we assume
that the orbit of p under 〈β〉 is proper (that is, it has no accumulation points)
since otherwise, we could apply Lemma 4.5.1.

We fix the following notation. Let pi = βi(p), and let τ be a smooth arc from
p0 to p1 such that dβ(τ ′(0)) = τ ′(1). Let P = ∪ipi and l = ∪iβ

i(τ). We also
introduce notation δ = α(τ).

First we introduce an algebraic tool to study the dynamics of α and β , which
we call the Alexander series, by analogy with the usual Alexander polynomial
of a knot. The condition we will impose on τ will ensure that the series is
actually a Laurent polynomial.

We assume the Euler class of our representation ρ is n 6= 0. Look at the closed
curve τ ∪ δ . This is the image of a fundamental domain for the torus under a
“degenerate” developing map, so we can calculate the Euler class of ρ from the
formula in Construction 4.1.2.

The curves τ, δ both represent elements in relative homology

[τ ], [δ] ∈ H1(R
2, P ; Z).

Since there is no natural intersection form on this group, we must work harder
to find the correct algebraic definition of the Euler class.

There is a natural Laurent series associated to the action ρ, defined as follows:

Definition 4.6.1 The Alexander series of ρ, denoted

Aρ ∈ Z[[t, t−1]]

is defined as follows. For the moment, assume that for our choice of τ , that
δ and τ are transverse at 0. The constant term is the algebraic intersection
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number, for a generic choice of representative (subject to the constraints above)
of δ and τ , plus the algebraic sign of the intersection at 0. We now define the
other coefficients. For i 6= 0, let the coefficient of ti be the algebraic intersection
number of the interior of δ with the interior of βi(τ).

If dα(p) = Id, so that τ and δ cannot be made transverse at 0, we let φ be a
diffeomorphism centered at p with small support, which fixes p and has linear
part dφ(p) a nontrivial rotation. Then define

δ′ = βφβ−1φ(δ)

and compute the constant term as above for δ′ and τ . We denote the ith
coefficient of Aρ by ai .

Notation 4.6.2 If µ, ν are two arcs or loops in general position, we denote
their algebraic intersection number by µ · ν . So, with this notation, we have

ai = δ · βi(τ)

and
µ · ν = −ν · µ.

Remark 4.6.3 As defined, Aρ might depend on τ . Nevertheless we suppress
this in the notation.

Notice that the coefficients of the power series only depend on the germs of
τ, δ at p0, p1 , together with their smooth isotopy class in R2\N(p0 ∪p1), where
N(p0 ∪ p1) denotes a sufficiently small regular neighborhood of p0 ∪ p1 . So if
we replace τ, δ with τ ′, δ′ which are smoothly isotopic by an isotopy supported
outside a neighborhood of P , the algebraic intersection number of δ′ with βi(τ ′)
is equal to the ith coefficient of Aρ .

For the moment, we have defined Aρ ∈ Z[[t, t−1]]. We show, under the right
conditions, that Aρ is actually a Laurent polynomial.

But first we must see how to calculate the Euler class of ρ from the configuration
of τ and δ .

Lemma 4.6.4 Let ρ : Z ⊕ Z → Homeo+(R2) be C1 . Let α, β be the genera-

tors, and let p be fixed by α. Let τ be an embedded arc from p to β(p), and

let δ be α(τ). Let τ± be immersed proper rays in R2 such that τ− ∪ τ ∪ τ+

is an immersed proper line, and τ± intersect τ only at their endpoints. Then

the Euler class ρ∗([e]), evaluated on the fundamental cycle of Z ⊕ Z, satisfies

the formula

ρ∗([e])([Z ⊕ Z]) = δ · τ+ − δ · τ−.
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Proof First we prove the lemma in the case that τ+, τ− are properly embed-
ded, and intersect τ only at their endpoints.

For concreteness, let τ− ∪ τ ∪ τ+ be the real axis, oriented so that τ− limits to
−∞.

δ

δ′

p

p

Figure 4: The Euler class can be calculated from the intersection numbers δ · τ± . The
green loop is the smoothed boundary of a fundamental domain for the hypothetical
Z ⊕ Z action. The index of the green loop is δ · τ+ − δ · τ− + 1 = 2 + 1 + 1 = 4, and
the Euler class is 3.

We can deform δ through a family of smooth arcs which are all embedded,
which do not intersect p or β(p) except at their endpoints, and whose germ
near p, β(p) is fixed. The end result of this deformation we will denote δ′ .
This deformation does not change either the index of δ ∪ τ , or the intersection
numbers δ · τ± . After such a deformation we can assume δ′ is of a particularly
simple form: it consists of three pieces: a concentric spiral around p through
δ · τ− revolutions, a concentric spiral around β(p) through δ · τ+ revolutions,
and an arc between the two which has no vertical tangent. To see this, observe
that we can deform δ to τ by an isotopy rel. endpoints through smooth arcs,
at the cost of twisting the tangent vectors at p and at β(p) through δ · τ− and
δ · τ+ revolutions, respectively. Then we can “undo” this twisting by inserting
spirals, to produce δ′ .

When we smooth the curve τ ∪ δ to calculate the index by the formula of
Construction 4.1.2, we introduce another twist at β(p). As described in Con-
struction 4.1.2, this is because to smooth the curve correctly, we must make a
perturbation at the degenerate edges of the developing map, in a way which

Geometry & Topology Monographs, Volume 7 (2004)



480 Danny Calegari

is coherent with respect to the edge pairing transformations. If the “degener-
ate edge” from p to α(p) is perturbed to a short vertical edge lying on the
positive side of τ , then the degenerate edge from β(p) to αβ(p) must also be
on the positive side of τ , and the end of δ′ must cross over τ near β(p) to
reach αβ(p). It follows that the index of the smoothing of τ ∪ δ is equal to
δ · τ+ − δ · τ− +1 and therefore, by the formula of Construction 4.1.2, the Euler
class is δ · τ+ − δ · τ− , as claimed.

For an example, see Figure 4. In this case δ ·τ+ = 2, δ ·τ− = −1 and the Euler
class is 3.

Note that this calculation is still valid if τ−, τ+ are merely properly immersed

rays which do not intersect τ except at their endpoints. For, we can always
isotope δ to δ′ which is contained in a neighborhood of τ , without affecting the
intersection number with τ+ or τ− , and therefore the calculation is insensitive
to intersections of τ± with each other or with themselves away from τ . This
completes the proof in general.

With this lemma, we can establish the following fundamental properties of Aρ .

Lemma 4.6.5 Suppose that τ has the property that for any i, the algebraic

intersection number of τ and βi(τ) is zero. Then the Alexander series Aρ(t) =∑
i ait

i has the following properties:

(1) Aρ is actually a Laurent polynomial. That is, the coefficient of ti is zero

for all but finitely many i.

(2) The sum of the coefficients is zero:

Aρ(1) = 0.

(3) The Euler class ρ∗([e])([Z ⊕ Z]), which we abbreviate by eρ , satisfies

eρ =
∑

i>0

ai −
∑

i<0

ai.

In this case, we call Aρ the Alexander polynomial of ρ.

Proof Recall our standing assumption throughout this section that the orbit of
p under 〈β〉 is discrete, since otherwise Lemma 4.5.1 would apply. We show how
the first fact of the lemma follows from this assumption. By the assumption,
for large i, the points pi, pi+1 escape any compact set. Since βi(τ) is an arc
from pi to pi+1 , the algebraic intersection number of this arc with τ ∪ δ is zero.
But by hypothesis, βi(τ) and τ have algebraic intersection number zero, so the
algebraic intersection with δ alone is also zero.
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The second fact follows for essentially the same reason as the first fact: the
union τ ∪ δ is an (immersed) closed loop, and the sum of coefficients is equal
to the algebraic intersection number of τ ∪ δ with the union l = ∪iβ

i(τ). Since
the pi are unbounded, the algebraic intersection of the loop and l is zero, and
therefore the formula follows.

The third fact follows from Lemma 4.6.4, by using
⋃

i<0 β
i(τ) as τ− , and⋃

i>0 β
i(τ) as τ+ . Now, the union

⋃
i β

i(τ) is not necessarily properly immersed
in general, but note that we can homotope each βi(τ) rel. a neighborhood of its
endpoints (not necessarily equivariantly!) without intersecting the endpoints of
τ during the track of the homotopy, to new τ ′i until the union

⋃
i τ

′
i is properly

immersed. This does not change the algebraic intersection number with δ .
Then

eρ =
∑

i>0

δ · τ ′i −
∑

i<0

δ · τ ′i =
∑

i>0

δ · βi(τ) −
∑

i<0

δ · βi(τ) =
∑

i>0

ai −
∑

i<0

ai.

With this algebraic tool, we can now prove the following lemma:

Lemma 4.6.6 Let ρ : Z⊕Z → Homeo+(R2) be a C1 action which is not free.

Suppose Z⊕Z is generated by α and β , where α fixes some point p, and there

is a smooth embedded arc τ from p to β(p) with dβ(τ ′(0)) = τ ′(1) such that

the algebraic intersection number of τ with βi(τ) is zero for any i. Then the

Euler class ρ∗([e]) is zero.

Proof Let ai be the ith coefficient of Aρ . Let Gn be the subgroup of Z ⊕ Z

of index 2n+ 1 generated by α and β2n+1 . This gives a new representation ρn

of Z ⊕ Z, whose Euler class is equal to 2n + 1 times the Euler class of ρ, by
multiplicativity. The new edges τ2n+1, δ2n+1 which are the nondegenerate sides
of a fundamental domain for the new Z ⊕ Z subgroup can be chosen to be the
unions

τ2n+1 =
n⋃

i=−n

βi(τ), δ2n+1 =
n⋃

i=−n

βi(δ)

respectively.

By the definition of Aρ and the fact that

βi(δ) · βj(τ) = δ · βj−i(τ) = aj−i

we can calculate

Aρn
(t) =

∑

j

2n∑

i=−2n

(2n+ 1 − |i|)ai+j(2n+1)t
j

Geometry & Topology Monographs, Volume 7 (2004)



482 Danny Calegari

and so by Lemma 4.6.5, we have

eρn
= (2n + 1)eρ

=
∑

j>0

2n∑

i=−2n

(2n + 1 − |i|)ai+j(2n+1) −
∑

j<0

2n∑

i=−2n

(2n + 1 − |i|)ai+j(2n+1)

=
∑

i>0

min(i, 2n + 1)ai −
∑

i<0

min(−i, 2n + 1)ai.

Now, by Lemma 4.6.5, the coefficients ai are zero for |i| sufficiently large. But
one sees that the coefficient of each ai in the expression for eρn

is eventually
constant and equal to i, so as n increases, the right hand side is eventually
constant. On the other hand, it is equal to (2n + 1)eρ , so eρ is equal to zero,
as claimed

4.7 The case that τ · βi(τ) 6= 0

In general, we cannot find an arc τ with the properties of Lemma 4.6.6. An
example is constructed in [14] of an orientation-preserving homeomorphism h
of R2 with a proper orbit hi(p) such that every arc τ from p to h(p) must
intersect its translates. We show how to modify our arguments to deal with the
case that τ · βi(τ) 6= 0 for some (possibly infinitely many) i.

Let τ be any smooth arc joining p to β(p), satisfying dβ(τ ′(0)) = τ ′(1).

Definition 4.7.1 The self-intersection series, denoted Bρ ∈ Z[[t, t−1]] is de-
fined by setting the constant term equal to zero, and for i 6= 0, the ti term
equal to the algebraic intersection number of τ with βi(τ).

There is no good way to define the homological self-intersection of τ with itself,
so the constant term must be zero. A meaningful quantity to describe the
smooth isotopy class of τ rel. endpoints is the writhe, defined as follows:

Definition 4.7.2 Let τ be a smooth immersed arc in R2 . Choose an orient-
ation-preserving identification of tangent spaces

φ : Tτ(0)R
2 −→ Tτ(1)R

2

such that φ(τ ′(0)) = τ ′(1). Let C denote the space of homotopy classes of C1

immersed curves σ in R2 from τ(0) to τ(1) with φ(σ′(0)) = σ′(1). Note that
these curves may intersect their endpoints in their interiors. The class of τ in
C is denoted [τ ] and is called the writhe of τ .
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Given a group G, an affine space for G is a space X with a transitive G action
whose point stabilizers are trivial. For example, the action of a group G on
itself makes G into an affine space for G. Similarly, the fibers of a principle
G–bundle are affine spaces for G.

Given two smooth 1–manifolds κ1, κ2 in the plane, the connect sum is obtained
as follows. Let I be an embedded arc joining a point in the interior of κ1 to
a point in the interior of κ2 . Thicken I to a 1–handle I × I , with boundary
I×{0, 1}∪{0, 1}×I , where I×{0, 1} is contained in the κi . Then the connect
sum κ1♯κ2 is given by the formula

κ1♯κ2 = (κ1 ∪ κ2) ∪ ∂(I × I)\(κ1 ∪ κ2) ∩ ∂(I × I).

This produces a 1–manifold with corners; we round the corners to get a smooth
1–manifold which by abuse of notation we call the connect sum. See Figure 5
for an illustration of this operation.

Figure 5: The operation of connect summing with a small figure 8 on the positive side
generates the action of Z on C .

Lemma 4.7.3 The space C is an affine space for Z where the action of 1 is

given by connect summing with a small figure 8 on the positive side.

Proof This is a very special case of Smale’s immersion theorem [35]. In this
context, it basically follows from the Whitney trick [41]. The Gauss map takes
a C1 immersed arc to the unit circle in R2 . As a family of arcs varies in an
equivalence class of C , the images vary in a homotopy class rel. endpoints.
The space of homotopy classes of maps from I to S1 with fixed endpoints is
an affine space for Z; the content of Smale’s theorem in this case is that these
two spaces are equivalent.
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Note that there is no natural basepoint for C , but given τ and δ , the difference
of the writhe of [τ ] and [δ] is an integer, which we denote by

[τ ] − [δ] = n ∈ Z

where we are using the structure of C as an affine Z space. That is, if n is
non-negative (say), then the connect sum of τ with n copies of a small figure
8 on the positive side is in the same equivalence class of C as δ .

Lemma 4.7.4 With τ, δ as above, the difference in writhe is equal to the

Euler class:

[τ ] − [δ] = eρ.

Proof This follows immediately from the definition of index and the formula
in Construction 4.1.2. Firstly, observe that the index of the smoothing only
depends on the class of τ and δ in C . If τ = δ , then the index is obviously 1,
and eρ = 0. Finally, connect summing τ with a figure 8 on the positive side
changes both the writhe of [τ ] and the index of the smoothing by 1.

For τ with the properties of the previous section, Bρ is identically zero. The
Alexander series Aρ is defined as before. We now prove the analogous case of
Lemma 4.6.5 where Bρ is not identically zero. We prove the following lemma for
arbitrary τ joining p to β(p); in particular, we do not assume τ is embedded.

Lemma 4.7.5 For general τ , the series Aρ and Bρ satisfy the following prop-

erties:

(1) The coefficients of Bρ are antisymmetric; that is, if Bρ =
∑

i bit
i , then

bi = −b−i.

(2) The sum Aρ −Bρ is a Laurent polynomial.

(3) The sum of the coefficients of Aρ −Bρ is zero:

(Aρ −Bρ)(1) = 0.

(4) The Euler class ρ∗([e])([Z ⊕ Z]), which we abbreviate by eρ , satisfies

eρ =
∑

i>0

(ai − bi) −
∑

i<0

(ai − bi).
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Proof The first fact follows because the intersection number of τ with βi(τ)
is equal to the intersection number of β−i(τ) with τ , and intersection number
of 1–cycles is antisymmetric.

The second and third facts follow as in Lemma 4.6.5, by the fact that τ ∪ δ
(where τ has the opposite orientation) is an (immersed) closed loop, and the
orbit βi(p) is proper.

To calculate the Euler number, we move τ and δ by a homotopy τt, δt through
C1 immersions whose germs near p and β(p) are constant. We move τ, δ
equivariantly, so that at each stage, δt = α(τt). We also connect sum τ and δ
equivariantly with sufficiently many figure 8’s on the positive or negative sides
until they are embedded curves from p to β(p).

Note that at finitely many times t0 , we might move τt0 through some pi , and
change bi and bi−1 . However, since δt0 = α(τt0), it follows that δt0 passes
through pi simultaneously. Therefore τt · β

i(τ) and δt · β
i(τ) change by the

same amount at such a time t0 , and therefore the differences δt ·β
i(τ)−τt ·β

i(τ)
are always constant, and equal to ai − bi .

We also connect sum τ and δ equivariantly with sufficiently many small fig-
ure 8’s on positive or negative sides. This does not affect any ai or bi , and
by Lemma 4.7.4, it does not affect the difference in writhe [τt] − [δt] or the
calculation of the Euler class.

It follows that the Euler class can be calculated from the formula given in
Lemma 4.6.4, after finding suitable properly immersed rays τ± such that τ− ∪
τ ∪ τ+ is a properly immersed line, and τ± do not intersect τ except at their
endpoints.

We obtain such rays τ± by a suitable deformation of the rays
⋃

i<0 β
i(τ) and⋃

i>0 β
i(τ). Initially, some βi(τ) might intersect τ essentially. But we can

homotope each βi(τ) through smooth curves, rel. endpoints, to τ ′i which are
disjoint from τ , at the cost of crossing τ ′i bi times (algebraically) over p, β(p).
Then for each i,

δ · τ ′i − τ · τ ′i = δ · βi(τ) − τ · βi(τ).

Moreover, we can homotope τ ′i through immersions rel. endpoints, and without
crossing p or β(p), to some new τ ′′i , so that the unions

⋃
i>0 τ

′′
i = τ+ and⋃

i<0 τ
′′
i = τ− are properly immersed, and do not intersect τ except at their

endpoints. Then

δ · τ ′′i = δ · βi(τ) − τ · βi(τ) = ai − bi

so the formula for the Euler class follows.

Note that since Aρ−Bρ is a Laurent polynomial, this is actually a finite sum.
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Having established the properties of Aρ and Bρ , we can now prove the analogue
of Lemma 4.6.6 for arbitrary τ .

Lemma 4.7.6 Let ρ : Z⊕Z → Homeo+(R2) be a C1 action which is not free.

Then the Euler class ρ∗([e]) is zero.

Proof Without loss of generality, we can assume α fixes some p, and the orbit
of p under β is proper. Let τ be as above, and define the series Aρ, Bρ . Let
Gn be the subgroup of Z ⊕ Z of index 2n + 1 generated by α and β2n+1 as
before. As in the proof of Lemma 4.6.6, we have

eρn
= (2n+ 1)eρ =

∑

j>0

2n∑

i=−2n

(2n + 1 − |i|)(ai+j(2n+1) − bi+j(2n+1))

−
∑

j<0

2n∑

i=−2n

(2n+ 1 − |i|)(ai+j(2n+1) − bi+j(2n+1)).

On the other hand, by Lemma 4.7.5, the coefficients ai − bi are zero for |i|
sufficiently large, so as n increases, the right hand side is eventually constant.
On the other hand, this sum is equal to (2n + 1)eρ , so eρn

= eρ = 0, as
claimed.

4.8 Vanishing of the Euler class

From the previous section, we know that a C1 Z ⊕ Z action with nontrivial
Euler class must be free; that is, no nontrivial element has a fixed point.

We make use of several theorems, one of which was originally proved by Brouwer
(see [2]), but later given a simpler and more illuminating proof by many people
including [33], [10]. The first theorem says that for β a fixed-point-free orienta-
tion preserving homeomorphism of R2 , and p arbitrary, we can find an arc τ
from p to β(p) which does not intersect its translates, except at the endpoints.
More formally,

Theorem 4.8.1 (Brouwer) Let α : R2 → R2 be orientation-preserving and

fixed point free. Then every point has a proper orbit, and for every point p ∈ R2

there is an embedded line l ⊂ R2 containing p, on which the action of α is

conjugate to a translation.

Remark 4.8.2 The caveat of Theorem 4.8.1 is that the invariant line l it pro-
duces through every point p is not generally properly embedded, even though
the orbit of every point is properly embedded.
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We also make use of a property of fixed-point-free orientation-preserving home-
omorphism, established by Brown, in [3].

Brown makes the following definition:

Definition 4.8.3 An orientation-preserving homeomorphism h : R2 → R2 is
free if for every bounded, connected set X with X ∩ h(X) = ∅, we have X ∩
hi(X) = ∅ for all i ∈ Z.

Theorem 4.8.4 (Brown) Let h : R2 → R2 be a fixed-point-free orientation

preserving homeomorphism. Then h is free.

Finally, we prove an algebraic lemma:

Lemma 4.8.5 Let h : R2 → R2 be a C1 orientation preserving homeomor-

phism. Then for any two arcs τ1, τ2 from p to h(p) such that the union of

translates of τi is a C1 embedded line for i = 1, 2, the writhe of τ1 and τ2 are

equal.

Proof Note that for an arc τ with the property in question, the homeomor-
phism h satisfies dh(τ ′(0)) = τ ′(1) so the difference in writhe of τ1 and τ2
make sense.

We go from τ1 to τ2 by a sequence of deformations of two different kinds.

The first kind of deformation does not change the writhe. This is a deformation
τt through smooth embedded curves which for each t satisfy dh(τ ′t(0)) = τ ′t(1).
For certain values of t, τt might pass through some vertex hi(p). By the
embeddedness assumption, i 6= 0, 1. Moreover, we choose the track of the
isotopy of τt to be in general position with respect to each hi(p), so that for
instance, there are only finitely many values of t for which τt passes through
some hi(p).

For any index i, for small values of t − 1 we have τt · h
i(τt) = 0. As τt

passes over some vertex hi(p), the value of τt · h
i(τt) changes by e, and the

value of τt · h
i+1(τt) changes by −e, where e = ±1 depending on orientations.

Simultaneously, the values of h−i(τt) ·τt and h−i−1(τt) ·τt change by e and −e.
No other intersection numbers change for nearby values of t. It follows that
the finite sum

wt =
∑

i>0

τt · h
i(τt) −

∑

i<0

τt · h
i(τt)

is constant under deformations of the first kind.
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The second kind of deformation changes the writhe. This consists of modifying
τt in a small neighborhood of p to some new τt′ by introducing a positive or
negative “twist”, thereby changing the writhe by ±1. Under such a deformation

τt′ · h
−1(τt′) − τt · h

−1(τt) = 1

and
τt′ · h(τt′) − τt · h(τt) = −1

for a positive twist, and the values change oppositely for a negative twist. It
follows that wt (as defined in the previous paragraph) changes by ±2 under
deformations of the second kind.

By combining deformations of these two kinds, we see that

wt = 2([τt] − [τ1])

where as in Lemma 4.7.4 the notation [τt]− [τ1] means the difference in writhe.
It follows that wt is equal to 0 iff the writhe of τt is equal to the writhe of τ1 .
On the other hand, if we deform τ1 to τ2 by a sequence of deformations of the
two kinds above, then w2 = 0, since τ2 does not intersect hi(τ2) except at its
endpoints. So [τ2] − [τ1] = 0, and the lemma is proved.

Remark 4.8.6 In fact, the argument of Lemma 4.6.6 can be used to give
another proof of Lemma 4.8.5. Conversely, Lemma 4.8.5 can be used to give
a different proof of Lemma 4.6.6. But the argument of Lemma 4.8.5 does not
easily generalize to prove Lemma 4.7.6, whereas the argument of Lemma 4.6.6
does.

We are now ready to prove the main theorem on homological rigidity of C1

Z ⊕ Z actions:

Theorem D Let ρ : Z ⊕ Z → Homeo+(R2) be a C1 action. Then the Euler

class ρ∗([e]) ∈ H2(Z ⊕ Z; Z) is zero.

Proof By Lemma 4.7.6, we have proved this theorem except in the case that
ρ(Z ⊕ Z) is free.

Let p be arbitrary, and let τ be a smooth arc from p to β(p) so that
⋃

i β
i(τ) = l

is an embedded line. Such a τ can be found by Theorem 4.8.1. Let σ be an
arc from p to α(p). For each point pt ∈ σ , we let τt be a smooth arc from
pt to β(pt) so that

⋃
i β

i(τt) = lt is an embedded line. We show that for any
t0 , there is an ǫ so that for |t − t0| < ǫ, the family τt can be chosen to vary
smoothly.
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To see this, observe that we can certainly choose a smoothly varying family τt
near τt0 so that τt intersects β(τt) only at β(pt). But by Theorem 4.8.4, this
implies that the union of the βi(τt) is an embedded line, as required.

It follows that we can subdivide [0, 1] into finitely many intervals

[0, q1], [q1, q2], . . . , [qn, 1]

and choose smooth families τ i
t for qi ≤ t ≤ qi+1 with the property that τ0

0 = τ
and τn

1 = α(τ). But τ i
qi+1

and τ i+1
qi+1

have equal writhe, by Lemma 4.8.5, so

we can insert a 1–parameter family of isotopies from τ i
qi+1

to τ i+1
qi+1

whose germ
at pt, β(pt) is fixed. After inserting these isotopies, we have constructed a one
parameter family of curves τt from τ to α(τ) with dβ(τ ′t(0)) = τ ′t(1) for all
t. The vector field τ ′t pulls back to give a trivialization over a fundamental
domain P1 for the torus. It follows from the formula of Construction 4.1.2 that
the Euler class is zero, and the theorem is proved.

Remark 4.8.7 It might be possible to try to prove theorem D by a cancellation
argument, by analogy with Lemma 4.6.6 and Lemma 4.7.6. The problem is
that, though the orbit of any point p under any cyclic subgroup of a free action
ρ(Z⊕Z) is proper, it is not true that the orbit under all of ρ(Z⊕Z) is proper.

Remark 4.8.8 Notice that the use of Brown’s theorem in the proof of theorem
D is essential, in order to be able to apply compactness of the interval σ and
compare the relative writhe of τ and β(τ). Brown’s theorem itself is a kind of
compactness theorem, since it lets one establish properties of the entire orbit
of a connected set τ from the properties of only two translates τ and β(τ).
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