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Preface
This book presents some of the main themes in the development of the combina-
torial topology of high-dimensional manifolds, which took place roughly during
the decade 1960–70 when new ideas and new techniques allowed the discipline
to emerge from a long period of lethargy.

The first great results came at the beginning of the decade. I am referring
here to the weak Poincaré conjecture and to the uniqueness of the PL and
differentiable structures of Euclidean spaces, which follow from the work of J
Stallings and E C Zeeman. Part I is devoted to these results, with the exception
of the first two sections, which offer a historical picture of the salient questions
which kept the topologists busy in those days. It should be note that Smale
proved a strong version of the Poincaré conjecture also near the beginning of
the decade. Smale’s proof (his h–cobordism theorem) will not be covered in
this book.

The principal theme of the book is the problem of the existence and the unique-
ness of triangulations of a topological manifold, which was solved by R Kirby
and L Siebenmann towards the end of the decade.

This topic is treated using the “immersion theory machine” due to Haefliger and
Poenaru. Using this machine the geometric problem is converted into a bundle
lifting problem. The obstructions to lifting are identified and their calculation
is carried out by a geometric method which is known as Handle-Straightening.

The treatment of the Kirby–Siebenmann theory occupies the second, the third
and the fourth part, and requires the introduction of various other topics such
as the theory of microbundles and their classifying spaces and the theory of
immersions and submersions, both in the topological and PL contexts.

The fifth part deals with the problem of smoothing PL manifolds, and with
related subjects including the group of diffeomorphisms of a differentiable man-
ifold.

The sixth and last part is devoted to the bordism of pseudomanifolds a topic
which is connected with the representation of homology classes according to
Thom and Steenrod. For the main part it describes some of Sullivan’s ideas on
topological resolution of singularities.

The monograph is necessarily incomplete and fragmentary, for example the
important topics of h–cobordism and surgery are only stated and for these the
reader will have to consult the bibliography. However the book does aim to
present a few of the wide variety of issues which made the decade 1960–70 one
of the richest and most exciting periods in the history of manifold topology.
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Part I : PL Topology

1 Introduction

This book gives an exposition of: the triangulation problem for a topological
manifold in dimensions strictly greater than four; the smoothing problem for
a piecewise-linear manifold; and, finally, of some of Sullivan’s ideas about the
topological resolution of singularities.

The book is addressed to readers who, having a command of the basic notions
of combinatorial and differential topology, wish to gain an insight into those
which we still call the golden years of the topology of manifolds.1

With this aim in mind, rather than embarking on a detailed analytical introduc-
tion to the contents of the book, I shall confine myself to a historically slanted
outline of the triangulation problem, hoping that this may be of help to the
reader.

A piecewise-linear manifold, abbreviated PL, is a topological manifold together
with a maximal atlas whose transition functions between open sets of Rn+ admit
a graph that is a locally finite union of simplexes.

There is no doubt that the unadorned topological manifold, stripped of all possi-
ble additional structures (differentiable, PL, analytic etc) constitutes an object
of remarkable charm and that the same is true of the equivalences, namely the
homeomorphisms, between topological manifolds. Due to a lack of means at
one’s disposal, the study of such objects, which define the so called topological
category, presents huge and frustrating difficulties compared to the admittedly
hard study of the analogous PL category, formed by the PL manifolds and the
PL homeomorphisms.

A significant fact, which highlights the kind of pathologies affecting the topo-
logical category, is the following. It is not difficult to prove that the group of
PL self-homeomorphisms of a connected boundariless PL manifold Mm acts
transitively not just on the points of M , but also on the PL m-discs contained
in M . On the contrary, the group of topological self-homeomorphisms indeed

1The book may also be used as an introduction to A Casson, D Sullivan, M Armstrong,
C Rourke, G Cooke, The Hauptvermutung Book, K–monographs in Mathematics 1996.
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2 I : PL Topology

acts transitively on the points of M , but not on the topological m–discs of M .
The reason dates back to an example of Antoine’s (1920), better known in the
version given by Alexander and usually called the Alexander horned sphere.
This is a the boundary of a topological embedding h : D3 → R3 (where D3

is the standard disc x2 + y2 + z2 ≤ 1), such that π1(R3 \ h(D3)) 6= 1. It is
clear that there cannot be any automorphism of R3 taking h(D3) to D3 , since
R3 \D3 is simply connected.

As an observation of a different nature, let us recall that people became fairly
easily convinced that simplicial homology, the first notion of homology to be
formalised, is invariant under PL automorphisms; however its invariance under
topological homeomorphisms immediately appeared as an almost intractable
problem.

It then makes sense to suppose that the thought occurred of transforming prob-
lems related to the topological category into analogous ones to be solved in the
framework offered by the PL category. From this attitude two questions natu-
rally emerged: is a given topological manifold homeomorphic to a PL manifold,
more generally, is it triangulable? In the affirmative case, is the resulting PL
structure unique up to PL homeomorphisms?

The second question is known as die Hauptvermutung (the main conjecture),
originally formulated by Steinitz and Tietze (1908) and later taken up by Kneser
and Alexander. The latter, during his speech at the International Congress of
Mathematicians held in Zurich in 1932, stated it as one of the major problems
of topology.

The philosophy behind the conjecture is that the relation M1 topologically
equivalent to M2 should be as close as possible to the relation M1 combinato-
rially equivalent to M2 .

We will first discuss the Hauptvermutung, which is, in some sense, more im-
portant than the problem of the existence of triangulations, since most known
topological manifolds are already triangulated.

Let us restate the conjecture in the form and variations that are currently used.
Let Θ1 , Θ2 be two PL structures on the topological manifold M . Then Θ1 , Θ2

are said to be equivalent if there exists a PL homeomorphism f : MΘ1 →MΘ2 ,
they are said to be isotopy equivalent if such an f can be chosen to be isotopic
to the identity and homotopy equivalent if f can be chosen to be homotopic to
the identity.

The Hauptvermutung for surfaces and three-dimensinal manifolds was proved
by Kerékiárto (1923) and Moise (1952) respectively. We owe to Papakyri-
akopoulos (1943) the solution to a generalised Haupvermutung, which is valid
for any 2-dimensional polyhedron.

Geometry & Topology Monographs, Volume 6 (2003)



1 Introduction 3

We observe, however, that in those same years the topological invariance of
homology was being established by other methods.

For the class of C∞ triangulations of a differentiable manifold, Whitehead
proved an isotopy Haupvermutung in 1940, but in 1960 Milnor found a polyhe-
dron of dimension six for which the generalised Hauptvermutung is false. This
polyhedron is not a PL manifold and therefore the conjecture remained open
for manifolds.

Plenty of water passed under the bridge. Thom suggested that a structure on
a manifold should correspond to a section of an appropriate fibration. Milnor
introduced microbundles and proved that S7 supports twenty-eight differen-
tiable structures which are inequivalent from the C∞ viewpoint, thus refuting
the C∞ Hauptvermutung. The semisimplicial language gained ground, so that
the set of PL structures on M could be replaced effectively by a topological
space PL(M) whose path components correspond to the isotopy classes of PL
structures on M . Hirsch in the differentiable case and Haefliger and Poenaru
in the PL case studied the problem of immersions between manifolds. They
conceived an approach to immersion theory which validates Thom’s hypothesis
and establishes a homotopy equivalence between the space of immersions and
the space of monomorphisms of the tangent microbundles. This reduces the-
orems of this kind to a test of a few precise axioms followed by the classical
obstruction theory to the existence and uniqueness of sections of bundles.

Inspired by this approach, Lashof, Rothenberg, Casson, Sullivan and other au-
thors gave significant contributions to the triangulation problem of topological
manifolds, until in 1969 Kirby and Siebenmann shocked the mathematical world
by providing the following final answer to the problem.

Theorem (Kirby–Siebenmann) If Mm is an unbounded PL manifold and
m ≥ 5, then the whole space PL(M) is homotopically equivalent to the space
of maps K(Z/2, 3)M .

If m ≤ 3, then PL(M) is contractible (Moise).

K(Z/2, 3) denotes, as usual, the Eilenberg–MacLane space whose third homo-
topy group is Z/2. Consequently the isotopy classes of PL structures on M are
given by π0(PL(M)) = [M,K(Z/2, 3)] = H3(M,Z/2). The isotopy Hauptver-
mutung was in this way disproved. In fact, there are two isotopy classes of PL
structures on S3 × R2 and, moreover, Siebenmann proved that S3 × S1 × S1

admits two PL structures inequivalent up to isomorphism and, consequently,
up to isotopy or homotopy.

Geometry & Topology Monographs, Volume 6 (2003)



4 I : PL Topology

The Kirby–Siebenmann theorem reconfirms the validity of the Hauptvermutung
for Rm (m 6= 4) already established by Stallings in 1962.

The homotopy-Hauptvermutung was previously investigated by Casson and Sul-
livan (1966), who provided a solution which, for the sake of simplicity, we will
enunciate in a particular case.

Theorem (Casson–Sullivan) Let Mm be a compact simply-connected man-
ifold without boundary with m ≥ 5, such that H4(M,Z) has no 2-torsion.
Then two PL structures on M are homotopic.2

With respect to the existence of PL structures, Kirby and Siebenmann proved,
as a part of the above theorem, that: A boundariless Mm , with m ≥ 5, admits a
PL structure if and only if a single obstruction k(M) ∈ H4(M,Z/2) vanishes.

Just one last comment on the triangulation problem. It is still unknown whether
a topological manifold of dimension ≥ 5 can always be triangulated by a simpli-
cial complex that is not necessarily a combinatorial manifold. Certainly there
exist triangulations that are not combinatorial, since Edwards has shown that
the double suspension of a three-dimensional homological sphere is a genuine
sphere.

Finally, the reader will have noticed that the four-dimensional case has always
been excluded. This is a completely different and more recent story, which,
thanks to Freedman and Donaldson, constitutes a revolutionary event in the
development of the topology of manifolds. As evidence of the schismatic be-
haviour of the fourth dimension, here we have room only for two key pieces of
information with which to whet the appetite:

(a) R4 admits uncountably many PL structures.

(b) ‘Few’ four-dimensional manifolds are triangulable.

2This book will not deal with this most important and difficult result. The reader is
referred to [Casson, Sullivan, Armstrong, Rourke, Cooke 1996].
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2 Problems, conjectures, classical results 5

2 Problems, conjectures, classical results

This section is devoted to a sketch of the state of play in the field of combi-
natorial topology, as it presented itself during the sixties. Brief information is
included on developments which have occurred since the sixties.

Several of the topics listed here will be taken up again and developed at leisure
in the course of the book.

An embedding of a topological space X into a topological space Y is a con-
tinuous map µ : X → Y , which restricts to a homeomorphism between X and
µ(X).

Two embeddings, µ and ν , of X into Y are equivalent , if there exists a home-
omorphism h : Y → Y such that hµ = ν .

2.1 Knots of spheres in spheres

A topological knot of codimension c in the sphere Sn is an embedding
ν : Sn−c → Sn . The knot is said to be trivial if it is equivalent to the standard
knot, that is to say to the natural inclusion of Sn−c into Sn .

Codimension 1 – the Schoenflies conjecture

Topological Schoenflies conjecture Every knot of codimension one in Sn

is trivial.
• The conjecture is true for n = 2 (Schoenflies 1908) and plays an essential
role in the triangulation of surfaces. The conjecture is false in general, since
Antoine and Alexander (1920–24) have knotted S2 in S3 .

A knot ν : Sn−c → Sn is locally flat if there exists a covering of Sn−c by open
sets such that on each open U of the covering the restriction ν : U → Sn extends
to an embedding of U × Rc into Sn .

If c = 1, locally flat = locally bicollared:

ν(Sn−1)

Weak Schoenflies Conjecture Every locally flat knot is trivial.

• The conjecture is true (Brown and Mazur–Morse 1960).

Geometry & Topology Monographs, Volume 6 (2003)



6 I : PL Topology

Canonicalness of the weak Schoenflies problem

The weak Schoenflies problem may be enunciated by saying that any embedding
µ : Sn−1 × [−1, 1] → Rn extends to an embedding µ : Dn → Rn , with µ(x) =
µ(x, 0) for x ∈ Sn−1 .

Consider µ and µ as elements of Emb(Sn−1 × [−1, 1],Rn) and Emb(Dn,Rn)
respectively, ie, of the spaces of embeddings with the compact open topology.

[Huebsch and Morse 1960/1963] proved that it is possible to choose the solution
µ to the Schoenflies problem µ in such a way that the correspondence µ→ µ
is continuous as a map between the embedding spaces. We describe this by
saying that µ depends canonically on µ and that the solution to the Schoenflies
problem is canonical . Briefly, if the problems µ and µ′ are close, their solutions
too may be assumed to be close. See also [Gauld 1971] for a far shorter proof.

The definitions and the problems above are immediately transposed into the
PL case, but the answers are different.

PL–Schoenflies Conjecture Every PL knot of codimension one in Sn is
trivial.
• The conjecture is true for n ≤ 3, Alexander (1924) proved the case n = 3.
For n > 3 the conjecture is still open; if the n = 4 case is proved, then the
higher dimensional cases will follow.

Weak PL–Schoenflies Conjecture Every PL knot, of codimension one and
locally flat in Sn , is trivial.

• The conjecture is true for n 6= 4 (Alexander n < 4, Smale n ≥ 5).

Weak Differentiable Schoenflies Conjecture Every differentiable knot of
codimension one in Sn is setwise trivial, ie, there is a diffeomorphism of Sn

carrying the image to the image of the standard embedding.

• The conjecture is true for n 6= 4 (Smale n > 4, Alexander n < 4).

The strong Differentiable Schoenflies Conjecture, that every differentiable knot
of codimension one in Sn is trivial is false for n > 5 because of the existence
of exotic diffeomorphisms of Sn for n ≥ 6 [Milnor 1958].

A less strong result than the PL Shoenflies problem is a classical success of the
Twenties.

Theorem (Alexander–Newman) If Bn is a PL disc in Sn then the closure
Sn −Bn is itself a PL disc.

Geometry & Topology Monographs, Volume 6 (2003)



2 Problems, conjectures, classical results 7

The result holds also in the differentiable case (Munkres).

Higher codimensions

Theorem [Stallings 1963] Every locally flat knot of codimension c 6= 2 is
trivial.

Theorem [Zeeman 1963] Every PL knot of codimension c ≥ 3 is trivial.

Zeeman’s theorem does not carry over to the differentiable case, since Haefliger
(1962) has differentiably knotted S4k−1 in S6k ; nor it can be transposed into
the topological case, where there exist knots (necessarily not locally flat if c 6= 2)
in all codimensions 0 < c < n.

2.2 The annulus conjecture

PL annulus theorem [Hudson–Zeeman 1964] If Bn1 , Bn2 are PL discs in
Sn , with B1 ⊂ IntB2 , then

B2 −B1 ≈PL Ḃ1 × [0, 1].

Topological annulus conjecture Let µ, ν : Sn−1 → Rn be two locally flat
topological embeddings with Sµ contained in the interior of the disc bounded
by Sν . Then there exists an embedding λ : Sn−1 × I → Rn such that

λ(x, 0) = µ(x) and λ(x, 1) = ν(x).

• The conjecture is true (Kirby 1968 for n > 4, Quinn 1982 for n=4).

The following beautiful result is connected to the annulus conjecture:

Theorem [Cernavskii 1968, Kirby 1969, Edwards–Kirby 1971] The space
H(Rn) of homeomorphisms of Rn with the compact open topology is locally
contractible.

2.3 The Poincaré conjecture

A homotopy sphere is, by definition, a closed manifold of the homotopy type of
a sphere.

Geometry & Topology Monographs, Volume 6 (2003)



8 I : PL Topology

Topological Poincaré conjecture A homotopy sphere is a topological
sphere.

• The conjecture is true for n 6= 3 (Newman 1966 for n > 4, Freedman 1982
for n=4)

Weak PL–Poincaré conjecture A PL homotopy sphere is a topological
sphere.

• The conjecture is true for n 6= 3. This follows from the topological conjecture
above, but was first proved by Smale, Stallings and Zeeman (Smale and Stallings
1960 for n ≥ 7, Zeeman 1961/2 for n ≥ 5, Smale and Stallings 1962 for n ≥ 5).

(Strong) PL–Poincaré conjecture A PL homotopy sphere is a PL sphere.

• The conjecture is true for n 6= 3, 4, (Smale 1962, for n ≥ 5).

In the differentiable case the weak Poincaré conjecture is true for n 6= 3 (follows
from the Top or PL versions) the strong one is false in general (Milnor 1958).

Notes For n = 3, the weak and the strong versions are equivalent, due to
the theorems on triangulation and smoothing of 3–manifolds. Therefore the
Poincaré conjecture, still open, assumes a unique form: a homotopy 3–sphere
(Top, PL or Diff) is a 3–sphere. For n = 4 the strong PL and Diff conjectures
are similarly equivalent and are also still open. Thus, for n = 4, we are today
in a similar situation as that in which topologists were during 1960/62 before
Smale proved the strong PL high-dimensional Poincaré conjecture.

2.4 Structures on manifolds

Structures on Rn

Theorem [Stallings 1962] If n 6= 4, Rn admits a unique structure of PL
manifold and a unique structure of C∞ manifold.

Theorem (Edwards 1974) There exist non combinatorial triangulations of
Rn , n ≥ 5.

Therefore Rn does not admit, in general, a unique polyhedral structure.

Geometry & Topology Monographs, Volume 6 (2003)



2 Problems, conjectures, classical results 9

Theorem R4 admits uncountably many PL or C∞ structures.

This is one of the highlights following from the work of Casson, Edwards (1973-
75), Freedman (1982), Donaldson (1982), Gompf (1983/85), Taubes (1985).
The result stated in the theorem is due to Taubes. An excellent historical and
mathematical account can be found in [Kirby 1989].

PL–structures on spheres

Theorem If n 6= 4, Sn admits a unique structure of PL manifold.

This result is classical for n ≤ 2, it is due to Moise (1952) for n = 3, and to
Smale (1962) for n > 4.

Theorem (Edwards 1974) The double suspension of a PL homology sphere
is a topological sphere.

Therefore there exist non combinatorial triangulations of spheres. Consequently
spheres, like Euclidean spaces, do not admit, in general, a unique polyhedral
structure.

Smooth structures on spheres

Let C(Sn) be the set of orientation-preserving diffeomorphism classes of C∞

structures on Sn . For n 6= 4 this can be given a group structure by using
connected sum and is the same as the group of differentiable homotopy spheres
Γn for n > 4.

Theorem Assume n 6= 4. Then

(a) C(Sn) is finite,

(b) C(Sn) is the trivial group for n ≤ 6 and for some other values of n,
while, for instance, C(S4k−1) 6= {1} for all k ≥ 2.

The above results are due to Milnor (1958), Smale (1959), Munkres (1960),
Kervaire-Milnor (1963).

Geometry & Topology Monographs, Volume 6 (2003)



10 I : PL Topology

The 4-dimensional case

It is unknown whether S4 admits exotic PL and C∞ structures. The two
problems are equivalent and they are also both equivalent to the strong four-
dimensional PL and C∞ Poincaré conjecture. If C(S4) is a group then the
four-dimensional PL and C∞ Poincaré conjectures reduce to the PL and C∞

Schoenflies conjectures (all unsolved).

A deep result of Cerf’s (1962) implies that there is no C∞ structure on S4

which is an effectively twisted sphere, ie, a manifold obtained by glueing two
copies of the standard disk through a diffeomorphism between their boundary
spheres. Note that the PL analogue of Cerf’s result is an easy exercise: effec-
tively twisted PL spheres cannot exist (in any dimension) since there are no
exotic PL automorphisms of Sn .

These results fall within the ambit of the problems listed below.

Structure problems for general manifolds

Problem 1 Is a topological manifold of dimension n homeomorphic to a PL
manifold?
• Yes for n ≤ 2 (Radò 1924/26).

• Yes for n = 3 (Moise, 1952).

• No for n = 4 (Donaldson 1982).

• No for n > 4 : in each dimension > 4 there are non-triangulable topological
manifolds (Kirby–Siebenmann 1969).

Problem 2 Is a topological manifold homeomorphic to a polyhedron?

• Yes if n ≤ 3 (Radò, Moise).

• No for n = 4 (Casson, Donaldson, Taubes, see [Kirby Problems 4.72]).

• Unknown for n > 5, see [Kirby op cit].

Problem 3 Is a polyhedron, which is a topological manifold, also a PL man-
ifold?
• Yes if n ≤ 3.

• Unknown for n = 4, see [Kirby op cit]. If the 3-dimensional Poincaré con-
jecture holds, then the problem can be answered in the affirmative, since the
link of a vertex in any triangulation of a 4-manifold is a simply connected 3-
manifold.
• No if n > 4 (Edwards 1974).

Geometry & Topology Monographs, Volume 6 (2003)



2 Problems, conjectures, classical results 11

Problem 4 (Hauptvermutung for polyhedra) If two polyhedra are homeo-
morphic, are they also PL homeomorphic?

• Negative in general (Milnor 1961).

Problem 5 (Hauptvermutung for manifolds) If two PL manifolds are home-
omorphic, are they also PL homeomorphic?

• Yes for n = 1 (trivial).

• Yes for n = 2 (classical).

• Yes for n = 3 (Moise).

• No for n = 4 (Donaldson 1982).

• No for n > 4 (Kirby–Siebenmann–Sullivan 1967–69).

Problem 6 (C∞ Hauptvermutung) Are two homeomorphic C∞ manifolds
also diffeomorphic?

• For n ≤ 6 the answers are the same as the last problem.

• No for n ≥ 7, for example there are 28 C∞ differential structures on S7

(Milnor 1958).

Problem 7 Does a C∞ manifold admit a PL manifold structure which is
compatible (according to Whitehead) with the given C∞ structure?
In the affirmative case is such a PL structure unique?

• The answer is affirmative to both questions, with no dimensional restrictions.
This is the venerable Whitehead Theorem (1940).

Note A PL structure being compatible with a C∞ structure means that the
transition functions relating the PL atlas and the C∞ atlas are piecewise–
differentiable maps, abbreviated PD.

By exchanging the roles of PL and C∞ one obtains the so called and much
more complicated “smoothing problem”.

Problem 8 Does a PL manifold Mn admit a C∞ structure which is White-
head compatible?

• Yes for n ≤ 7 but no in general. There exists an obstruction theory to
smoothing, with obstructions αi ∈ Hi+1(M ; Γi), where Γi is the (finite) group
of differentiable homotopy spheres (Cairns, Hirsch, Kervaire, Lashof, Mazur,
Munkres, Milnor, Rothenberg et al ∼ 1965).

• The C∞ structure is unique for n ≤ 6.

Geometry & Topology Monographs, Volume 6 (2003)



12 I : PL Topology

Problem 9 Does there always exist a C∞ structure on a PL manifold, possibly
not Whitehead–compatibile?

• No in general (Kervaire’s counterexample, 1960).

Geometry & Topology Monographs, Volume 6 (2003)



3 Polyhedra and categories of topological manifolds 13

3 Polyhedra and categories of topological manifolds

In this section we will introduce the main categories of geometric topology.
These are defined through the concept of supplementary structure on a topo-
logical manifold. This structure is usually obtained by imposing the existence of
an atlas which is compatible with a pseudogroup of homeomorphisms between
open sets in Euclidean spaces.

We will assume the reader to be familiar with the notions of simplicial com-
plex, simplicial map and subdivision. The main references to the literature
are [Zeeman 1963], [Stallings 1967], [Hudson 1969], [Glaser 1970], [Rourke and
Sanderson 1972].

3.1 The combinatorial category

A locally finite simplicial complex K is a collection of simplexes in some Eu-
clidean space E , such that:

(a) A ∈ K and B is a face of A, written B < A, then B ∈ K .

(b) If A,B ∈ K then A ∩ B is a common face, possibly empty, of both A
and B .

(c) Each simplex of K has a neighbourhood in E which intersects only a
finite number of simplexes of K .

Often it will be convenient to confuse K with its underlying topological space

|K| =
⋃
A∈K

A

which is called a Euclidean polyhedron.

We say that a map f : K → L is piecewise linear, abbreviated PL, if there exists
a linear subdivision K ′ of K such that f sends each simplex of K ′ linearly
into a simplex of L.

It is proved, in a non trivial way, that the locally finite simplicial complexes
and the PL maps form a category with respect to composition of maps. This
is called the combinatorial category.

There are three important points to be highlighted here which are also non
trivial to establish:

(a) If f : K → L is PL and K,L are finite, then there exist subdivisions
K ′ / K and L′ / L such that f : K ′ → L′ is simplicial. Here / is the
symbol used to indicate subdivision.
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14 I : PL Topology

(b) A theorem of Runge ensures that an open set U of a simplicial complex K
or, more precisely, of |K|, can be triangulated, ie, underlies a locally finite
simplicial complex, in a way such that the inclusion map U ⊂ K is PL.
Furthermore such a triangulation is unique up to a PL homeomorphism.
For a proof see [Alexandroff and Hopf 1935, p. 143].

(c) A PL map, which is a homeomorphism, is a PL isomorphism, ie, the in-
verse map is automatically PL. This does not happen in the differentiable
case as shown by the function f(x) = x3 for x ∈ R.

As evidence of the little flexibility of PL isomorphisms consider the differentiable
map of R into itself

f(x) =

{
x+ e−1/x2

4
sin
(

1
x

)
x 6= 0

0 x = 0.

This is even a C∞ diffeomorphism but it can not in any way be well approxi-
mated by a PL map, since the origin is an accumulation point of isolated fixed
points (Siebenmann).

If S ⊂ K is a subset made of simplexes, we call the simplicial closure of S the
smallest subcomplex of K which contains S :

S := {B ∈ K : ∃A ∈ S with B < A} .

In other words we add to the simplexes of S all their faces. Since, clearly,
|S| = |S|, we will say that S generates S .

Let v be a vertex of K , then the star of v in K , written S(v,K), is the
subcomplex of K generated by all the simplexes which admit v as a vertex,
while the link of v in K , written L(v,K), is the subcomplex consisting of all
the simplexes of S(v,K) which do not admit v as a vertex. The most important
property of the link is the following: if K ′ / K then L(v,K) ≈PL L(v,K ′).

K is called a n–dimensional combinatorial manifold without boundary, if the
link of each vertex is a PL n–sphere. More generally, K is a combinatorial n–
manifold with boundary if the link of each vertex is a PL n–sphere or PL n–ball.
(PL spheres and balls will be defined precisely in subsection 3.6 below.) It can
be verified that the subcomplex K̇ = ∂K ⊂ K generated by all the (n − 1)–
simplexes which are faces of exactly one n–simplex is itself a combinatorial
(n− 1)–manifold without boundary.

Geometry & Topology Monographs, Volume 6 (2003)



3 Polyhedra and categories of topological manifolds 15

3.2 Polyhedra and manifolds

Until now we have dealt with objects such as simplicial complexes which are, by
definition, contained in a given Euclidean space. Yet, as happens in the case of
differentiable manifolds, it is advisable to introduce the notion of a polyhedron
in an intrinsic manner, that is to say independent of an ambient Euclidean
space.

Let P be a topological space such that each point in P admits an open neigh-
bourhood U and a homeomorphism

ϕ: U → |K|

where K is a locally finite simplicial complex. Both U and ϕ are called a
coordinate chart. Two charts are PL compatible if they are related by a PL
isomorphism on their intersection.

A polyhedron is a metrisable topological space endowed with a maximal atlas of
PL compatible charts. The atlas is called a polyhedral structure. For example,
a simplicial complex is a polyhedron in a natural way.

A PL map of polyhedra is defined in the obvious manner using charts. Now
one can construct the polyhedral category, whose objects are the polyhedra and
whose morphisms are the PL maps.

It turns out to be a non trivial fact that each polyhedron is PL homeomorphic
to a simplicial complex.

A triangulation of a polyhedron P is a PL homeomorphism t : |K| → P , where
|K| is a Euclidean polyhedron. When there is no danger of confusion we will
identify, through the map t, the polyhedron P with |K| or even with K .

Alternative definition Firstly we will extend the concept of triangulation.
A triangulation of a topological space X is a homeomorphism t : |K| → X ,
where K is a simplicial complex. A polyhedron is a pair (P,F), where P is a
topological space and F is a maximal collection of PL compatible triangulations.
This means that, if t1 , t2 are two such triangulations, then t−1

2 t1 is a PL
map. The reader who is interested in the equivalence of the two definitions
of polyhedron, ie, the one formulated using local triangulations and the latter
formulated using global triangulations, can find some help in [Hudson 1969, pp.
76–87].

[E C Zeeman 1963] generalised the notion of a polyhedron to that of a polyspace.
As an example, R∞ is not a polyhedron but it is a polyspace, and therefore it
makes sense to talk about PL maps defined on or with values in R∞ .
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16 I : PL Topology

P0 ⊂ P is a closed subpolyhedron if there exists a triangulation of P which
restricts to a triangulation of P0 .

A full subcategory of the polyhedral category of central importance is that
consisting of PL manifolds. Such a manifold, of dimension m, is a polyhedron
M whose charts take values in open sets of Rm .

When there is no possibility of misunderstanding, the category of PL manifolds
and PL maps is abbreviated to the PL category. It is a non trivial fact that
every triangulation of a PL manifold is a combinatorial manifold and actually,
as happens for the polyhedra, this provides an alternative definition: a PL
manifold consists of a polyhedron M such that each triangulation of M is a
combinatorial manifold. The reader who is interested in the equivalence of the
two definitions of PL manifold can refer to [Dedecker 1962].

3.3 Structures on manifolds

The main problem upon which most of the geometric topology is based is that
of classifying and comparing the various supplementary structures that can be
imposed on a topological manifold, with a particular interest in the piecewise
linear and differentiable structures.

The definition of PL manifold by means of an atlas given in the previous sub-
section is a good example of the more general notion of manifold with structure
which we now explain. For the time being we will limit ourselves to the case of
manifolds without boundary.

A pseudogroup Γ on a Euclidean space E is a category whose objects are the
open subsets of E. The morphisms are given by a class of homeomorphisms
between open sets, which is closed with respect to composition, restriction, and
inversion; furthermore 1U ∈ Γ for each open set U . Finally we require the
class to be locally defined. This means that if Γ0 is the set of all the germs of
the morphisms of Γ and f : U → V is a homeomorphism whose germ at every
point of U is in Γ0 , then f ∈ Γ.

Examples

(a) Γ is trivial, ie, it consists of the identity maps. This is the smallest
pseudogroup.

(b) Γ consists of all the homeomorphisms. This is the biggest pseudogroup,
which we will denote Top.

(c) Γ consists of all the stable homeomorphisms according to [Brown and
Gluck 1964]. This is denoted SH. We will return to this important pseu-
dogroup in IV, section 9.
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3 Polyhedra and categories of topological manifolds 17

(d) Γ consists of all the Cr homeomorphisms whose inverses are Cr.

(e) Γ consists of all the C∞ diffeomophisms, denoted by Diff, or all the
Cω diffeomorphisms (real analytic), or all CΩ diffeomorphisms (complex
analytic).

(f) Γ consists of all the Nash homeomorphisms.

(g) Γ consists of all the PL homeomorphisms, denoted by PL.

(h) Γ is a pseudogroup associated to foliations (see below).

(i) E could be a Hilbert space, in which case an example is offered by the
Fredholm operators.

Let us recall that a topological manifold of dimension m is a metrisable topo-
logical space M , such that each point x in M admits an open neighbourhood
U and a homeomorphism ϕ between U and an open set of Rm . Both U and
ϕ are called a chart around x. A Γ structure Θ on M is a maximal atlas Γ–
compatible. This means that, if (Uα, ϕα) and (Uβ , ϕβ) are two charts around
x, then ϕβ ◦ ϕ−1

α is in Γ,where the composition is defined.

If Γ is the pseudogroup of PL homeomorphisms of open sets of Rm , Θ is nothing
but a PL structure on the topological manifold M . If Γ is the pseudogroup
of the diffeomorphisms of open sets of Rm , then Θ is a C∞ structure on M .
If, instead, the diffeomorphisms are Cr , then we have a Cr–structure on M .
Finally if Γ = SH, Θ is called a stable structure on M . Another interesting
example is described below.

Let π : Rm → Rp be the Cartesian projection onto the first p coordinates and
let Γm be one of the peudogroups PL, C∞ , Top, on Rm considered above. We
define a new pseudogroup FpΓ ⊂ Γm by requiring that f : U → V is in FpΓ if
there is a commutative diagram

U
f

//

π

��

V

π

��
π(U)

g
// π(V )

with f ∈ Γm , g ∈ Γp . A FpΓ –structure on M is called a Γ–structure with
a foliation of codimension p. Therefore we have the notion of manifold with
foliation, either topological, PL or differentiable.

A Γ–manifold is a pair (M,Θ), where M is a topological manifold and Θ is a Γ–
structure on M . We will often write MΘ , or even M when the Γ–structure Θ is
obvious from the context. If f : M ′ →MΘ is a homeomorphism, the Γ structure
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18 I : PL Topology

induced on M ′ , f∗(Θ), is the one which has a composed homeomorphism as a
typical chart

f−1(U)
f−→U ϕ−→ϕ(U)

where ϕ is a chart of Θ on M .

From now on we will concentrate only on the pseoudogroups Γ = Top, PL, Diff.

A homeomorphism f : MΘ → M ′Θ′ of Γ–manifolds is a Γ–isomorphism if Θ =
f∗(Θ′). More generally, a Γ–map f : M → N between two Γ–manifolds is a
continuous map f of the underlying topological manifolds, such that, written
locally in coordinates it is a topological PL or C∞ map, according to the
pseudogroup chosen. Then we have the category of the Γ–manifolds and Γ–
maps, in which the isomorphisms are the Γ–isomorphisms described above and
usually denoted by the symbol ≈Γ , or simply ≈.

3.4 Isotopy

In the category of topological spaces and continuous maps, an isotopy of X is
a homeomorphism F : X × I → X × I which respects the levels, ie, p = pF ,
where p is the projection on I .

Such an F determines a continuous set of homeomorphisms ft : X → X through
the formula

F (x, t) = (ft(x), t) t ∈ I.

Usually, in order to reduce the use of symbols, we write Ft instead of ft . The
isotopy F is said to be ambient if f0 = 1X . We say that F fixes Z ⊂ X , or
that F is relative to Z , if ft|Z = 1Z for each t ∈ I ; we say that F has support
in W ⊂ X if F it fixes X −W . Two topological embeddings λ, µ : Y → X are
isotopic if there exists an embedding H : Y × I → X × I , which preserves the
levels and such that h0 = λ and h1 = µ. The embeddings are ambient isotopic
if there exists H which factorises through an ambient isotopy, F , of X :

Y × I H //

λ×I
$$I

II
II

II
II

X × I

X × I
F

::ttttttttt

and, in this case, we will say that F extends H . The embedding H is said to
be an isotopy between λ and µ.

The language of isotopies can be applied, with some care, to each of the cate-
gories Top, PL, Diff.
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3 Polyhedra and categories of topological manifolds 19

3.5 Boundary

The notion of Γ–manifold with boundary and its main properties do not present
any problem. It is sufficient to require that the pseudogroup Γ is defined
satisfying the usual conditions, but starting from a class of homeomorphisms
of the open sets of the halfspace Rm+ = {(x1, . . . , xm) ∈ Rm : x1 ≥ 0}. The
points in M that correspond, through the coordinate charts, to points in the
hyperplane, {(x1, . . . , xm) ∈ Rm+ : x1 = 0} define the boundary ∂M or Ṁ of
M . This can be proved to be an (m − 1)-dimensional Γ–manifold without
boundary. The complement of ∂M in M is the interior of M , denoted either
by IntM or by

◦
M . A closed Γ–manifold is defined as a compact Γ–manifold

without boundary. A Γ–collar of ∂M in M is a Γ–embedding

γ : ∂M × I →M

such that γ(x, 0) = x and γ(∂M × [0, 1)) is an open neighbourhood of ∂M
in M . The fact that the boundary of a Γ–manifold always admits a Γ–collar,
which is unique up to Γ–ambient isotopy is very important and non trivial.

3.6 Notation

Now we wish to establish a unified notation for each of the two standard objects
which are mentioned most often, ie, the sphere Sm−1 and the disc Dm .

In the PL category, Dm means either the cube Im = [0, 1]m ⊂ Rm or the
simplex

∆m = {(x1, . . . , xm) ∈ Rm : xi ≥ 0 and Σxi ≤ 1} .
Sm−1 is either ∂Im or ∆̇m , with their standard PL structures.

In the category of differentiable manifolds Dm is the closed unit disc of Rm ,
with centre the origin and standard differentiable structure, while Sm−1 =
∂Dm .

A PL manifold is said to be a PL m–disc if it is PL homeomorphic to Dm . It is a
PL m–sphere if it is PL homeomorphic Sm . Analogously a C∞ manifold is said
to be a differentiable m–disc (or differentiable m–sphere) if it is diffeomorphic
to Dm (or Sm respectively).

3.7 h–cobordism

We will finish by stating two celebrated results of the topology of manifolds:
the h–cobordism theorem and the s–cobordism theorem.

Let Γ = PL or Diff. A Γ–cobordism (V,M0,M1) is a compact Γ–manifold
V , such that ∂V is the disjoint union of M0 and M1 . V is said to be an h–
cobordism if the inclusions M0 ⊂ V and M1 ⊂ V are homotopy equivalences.
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h–cobordism theorem If an h–cobordism V is simply connected and dimV
≥ 6, then

V ≈Γ M0 × I,
and in particular M0 ≈Γ M1.

In the case of Γ = Diff, the theorem was proved by [Smale 1962]. He intro-
duced the idea of attaching a handle to a manifold and proved the result using
a difficult procedure of cancelling handles. Nevertheless, for some technical
reasons, the handle theory is better suited to the PL case, while in differential
topology the equivalent concept of the Morse function is often preferred. This
is, for example, the point of view adopted by [Milnor 1965]. The extension of
the theorem to the PL case is due mainly to Stallings and Zeeman. For an
exposition see [Rourke and Sanderson, 1972]

The strong PL Poincaré conjecture in dim > 5 follows from the h–cobordism
theorem (dimension five also follows but the proof is rather more difficult). The
differentiable h–cobordism theorem implies the differentiable Poincaré conjec-
ture, necessarily in the weak version, since the strong version has been disproved
by Milnor (the group of differentiable homotopy 7–sphere is Z/28): in other
words a differentiable homotopy sphere of dim ≥ 5 is a topological sphere.

Weak h–cobordism theorem

(1) If (V,M0,M1) is a PL h–cobordism of dimension five, then

V −M1 ≈PL M0 × [0, 1).

(2) If (V,M0,M1) is a topological h–cobordism of dimension ≥ 5, then

V −M1 ≈Top M0 × [0, 1).

Let Γ = PL or Diff and (V,M0,M1) be a connected Γ h–cobordism not nec-
essarily simply connected. There is a well defined element τ(V,M0), in the
Whitehead group Wh (π1(V )), which is called the torsion of the h–cobordism
V . The latter is called an s–cobordism if τ(V,M0) = 0.

s–cobordism theorem If (V,M0,M1) is an s–cobordism of dim ≥ 6, then

V ≈Γ M0 × I.

This result was proved independently by [Barden 1963], [Mazur 1963] and
[Stallings 1967] (1963).

Note If A is a free group of finite type then Wh (A) = 0 [Stallings 1965].
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4 PL structure of Rm , Poincaré conjecture 21

4 Uniqueness of the PL structure on Rm ,
Poincaré conjecture

In this section we will cover some of the great achievments made by geometric
topology during the sixties and, in order to do that, we will need to introduce
some more elements of combinatorial topology.

4.1 Stars and links

Recall that the join AB of two disjoint simplexes, A and B , in a Euclidean
space is the simplex whose vertices are given by the union of the vertices of A
and B if those are independent, otherwise the join is undefined. Using joins,
we can extend stars and links (defined for verticesin 3.1) to simplexes.

Let A be a simplex of a simplicial complex K , then the star and the link of A
in K are defined as follows:

S(A,K) = {B ∈ K : A ≤ B} (here {, } means simplicial closure)
L(A,K) = {B ∈ K : AB ∈ K}.

Then S(A,K) = AL(A,K) (join).

If A = A′A′′ , then

L(A,K) = L(A′, L(A′′,K)).

From the above formula it follows that a combinatorial manifold K is charac-
terised by the property that for each A ∈ K :

L(A,K) is either a PL sphere or a PL disc.

Furthermore ∂K ≡ {A ∈ K : L(A,K) is a disc}.

4.2 Alexander’s trick

This applies to both PL and Top.

Theorem (Alexander) A homeomorphism of a disc which fixes the boundary
sphere is isotopic to the identity, relative to that sphere.

Geometry & Topology Monographs, Volume 6 (2003)
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Proof It will suffice to prove this result for a simplex ∆. Given f : ∆ → ∆,
we construct an isotopy F : ∆× I → ∆× I in the following manner:

0

1

f

x x

F | ∆ × {0} = f ; F = 1 if restricted to any other face of the prism. In this
way we have defined F on the boundary of the prism. In order to extend F to
its interior we define F (x) = x, where x is the centre of the prism, and then
we join conically with F |∂ . In this way we obtain the required isotopy.

It is also obvious that each homeomorphism of the boundaries of two discs
extends conically to the interior.

4.3 Collapses

If K ⊃ L are two complexes, we say that there is an elementary simplicial
collapse of K to L if K −L consists of a principal simplex A, together with a
free face. More precisely if A = aB , then K = L ∪A and aḂ = L ∩A

A

B

a
K

aL

K collapses simplicially to L, written K↘sL, if there is a finite sequence of
simplicial elementary collapses which transforms K into L.

In other words K collapses to L if there exist simplexes A1, . . . , Aq of K such
that

(a) K = L ∪A1 ∪ · · · ∪Aq
(b) each Ai has one vertex vi and one face Bi , such that Ai = viBi and

(L ∪A1 ∪ · · · ∪Ai−1) ∩Ai = viḂi.

For example, a cone vK collapses to the vertex v and to any subcone.
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4 PL structure of Rm , Poincaré conjecture 23

The definition for polyhedra is entirely analogous. If X ⊃ Y are two polyhedra
we say that there is an elementary collapse of X into Y if there exist PL
discs Dn and Dn−1 , with Dn−1 ⊂ ∂Dn , such that X = Y ∪ Dn and, also,
Dn−1 = Y ∩Dn

X

Y

Dn−1

Dn

X collapses to Y , written X ↘ Y , if there is a finite sequence of elementary
collapses which transforms X into Y .

For example, a disc collapses to a point: D ↘ ∗.

Let K and L be triangulations of X and Y respectively and X ↘ Y , the reader
can prove that there exist subdivisions K ′ / K , L′ / L such that K ′ ↘sL′ .

Finally, if K ↘sL, we say that L expands simplicially to K . The technique
of collapses and of regular neighbourhoods was invented by J H C Whitehead
(1939).

The dunce hat Clearly, if X ↘ ∗, then X is contractible, since each elemen-
tary collapse defines a deformation retraction, while the converse is false.

For example, consider the so called dunce hat H , defined as a triangle v0v1v2 ,
with the sides identified by the rule v0v1 = v0v2 = v1v2 .

v0 v1

v2

H

It follows that H is contractible (exercise), but H does not collapse to a point
since there are no free faces to start.

It is surprising that H × I ↘ ∗ [Zeeman, 1964, p. 343].
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Zeeman’s conjecture If K is a 2-dimensional contractible simplicial com-
plex, then K × I ↘ ∗.

The conjecture is interesting since it implies a positive answer to the three-
dimensional Poincaré conjecture using the following reasoning. Let M3 be a
compact contractible 3–manifold with ∂M3 = S2 . It will suffice to prove that
M3 is a disc. We say that X is a spine of M if M ↘ X . It is now an easy
exercise to prove that M3 has a 2-dimensional contractible spine K . From
the Zeeman conjecture M3 × I ↘ K × I ↘ ∗ . PL discs are characterised by
the property that they are the only compact PL manifolds that collapse to a
point. Therefore M3× I ≈ D4 and then M3 ⊂ Ḋ4 = S3 . Since ∂M3 ≈ S2 the
manifold M3 is a disc by the Schoenflies theorem.

For more details see [Glaser 1970, p. 78].

4.4 General position

The singular set of a proper map f : X → Y of polyhedra is defined as

S(f) = closure {x ∈ X : f−1f(x) 6= x}.

Let f be a PL map, then f is non degenerate if f−1(y) has dimension 0 for
each y ∈ f(X).

If f is PL, then S(f) is a subpolyhedron.

Let X0 be a closed subpolyhedron of Xx , with X −X0 compact and Mm a
PL manifold without boundary, x ≤ m. Let Y y be a possibly empty fixed
subpolyhedron of M .

A proper continuous map f : X →M is said to be in general position, relative
to X0 and with respect to Y , if

(a) f is PL and non degenerate,

(b) dim(S(f)−X0) ≤ 2x−m,

(c) dim (f(X −X0) ∩ Y ) ≤ x+ y −m.

Theorem Let g : X → M be a proper map such that g|X0 is PL and non
degenerate. Given ε > 0, there exists a ε–homotopy of g to f , relative to X0 ,
such that f is in general position.
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For a proof the following reading is advised [Rourke–Sanderson 1972, p. 61].

In terms of triangulations one may think of general position as follows: f : X →
M is in general position if there exists a triangulation (K,K0) of (X,X0) such
that

(1) f embeds each simplex of K piecewise linearly into M ,

(2) if A and B are simplexes of K −K0 then

dim (f(A) ∩ f(B)) ≤ dimA+ dimB −m,

(3) if A is a simplex of K −K0 then

dim ((f(A) ∩ Y ) ≤ dimA+ dimY −m.

One can also arrange that the following double-point condition be satisfied (see
[Zeeman 1963]). Let d = 2x−m
(4) S(f) is a subcomplex of K . Moreover, if A is a d–simplex of S(f) −

K0 , then there is exactly one other d–simplex A∗ of S(f) − K0 such
that f(A) = f(A∗). If S , S∗ are the open stars of A, A∗ in K then
the restrictions f | S , f | S∗ are embeddings, the images f(S), f(S∗)
intersect in f(

◦
A) = f(

◦
A∗) and contain no other points of f(X).

Remark Note that we have described general position of f both as a map
and with respect to the subspace Y , which has been dropped from the notation
for the sake of simplicity. We will need a full application of general position
later in the proof of Stallings’ Engulfing theorem.

Proposition Let X be compact and let f : X → Z be a PL map. Then if
X ⊃ Y ⊃ S(f) and X ↘ Y , then f(X)↘ f(Y ).

The proof is left to the reader. The underlying idea of the proof is clear:
X − Y 6⊃ S(f), the map f is injective on X − Y , therefore each elementary
collapse corresponds to an analogous elementary collapse in the image of f .

4.5 Regular neighbourhoods

Let X be a polyhedron contained in a PL manifold Mm . A regular neighbour-
hood of X in M is a polyhedron N such that

(a) N is a closed neighbourhood of X in M

(b) N is a PL manifold of dimension m
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(c) N ↘ X .

We will denote by ∂N the frontier of N in M .

We say that the regular neighbourhood N of X in M meets ∂M transversally
if either N ∩ ∂M is a regular neighbourhood of X ∩ ∂M in ∂M , or N ∩ ∂M =
X ∩ ∂M = ∅.
The example of a regular neighbourhood par excellence is the following.

Let (K,L) be a triangulation of (M,X) so that each simplex of K meets L
in a (possibly empty ) face; let f : K → I = ∆1 be the unique simplicial map
such that f−1(0) = L. Then for each ε ∈ (0, 1) it follows that f−1[0, ε] is a
regular neighbourhood of X in M , which meets ∂M transversally:

1 1 1 1 1

0
0 0 0 0

1 1 1 1 1

1

ε

0

X

Such a neighbourhood is simply called an ε–neighbourhood.

Theorem If X is a polyhedron of a PL manifold Mm , then:

(1) (Existence) There always exists a regular neighbourhood of X in M .

(2) (Uniqueness up to PL isomorphism) If N1 , N2 are regular neighbour-
hoods of X in M , then there exists a PL isomorphism of N1 and N2 ,
which fixes X .

(3) If X ↘ ∗, then each regular neighbourhood of X is a PL disc.

(4) (Uniqueness up to isotopy) If N1 , N2 are regular neighbourhoods of X
in M , which meet ∂M transversally, then there exists an ambient isotopy
which takes N1 to N2 and fixes X .

For a proof see [Hudson 1969, pp. 57–74] or [Rourke–Sanderson 1972, Chapter
3].

The following properties are an easy consequence of the theorem and therefore
are left as an exercise.

A) Let N1 , N2 be regular neighbourhoods of X in M with N1 ⊂
◦
N2 . Then

if N1 meets ∂M transversally, there exists a PL homeomorphism

N2 −N1 ≈PL ∂N1 × I.
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B) PL annulus theorem If D1 , D2 are m– discs with D1 ⊂
◦
D2 , then

D2 −D1 ≈PL ∂D1 × I .

Corollary Let D1 ⊂
◦
D2 ⊂ D2 ⊂

◦
D3 ⊂ . . . be a chain of PL m–discs. Then

∞⋃
1

Di ≈PL Rm.

The statement of the corollary is valid also in the topological case: a monotonic
union of open m–cells is an m–cell (M Brown 1961).

4.6 Introduction to engulfing

At the start of the Sixties a new powerful geometric technique concerning the
topology of manifolds arose and developed thanks to the work of J Stallings
and E C Zeeman. It was called Engulfing and had many applications, of which
the most important were the proofs of the PL weak Poincaré conjecture and of
the Hauptvermutung for Euclidean spaces of high dimension.

We say that a subset X—most often a closed subpolyhedron—of a PL m–
manifold M may be engulfed by a given open subset U of M if there exists a
PL homeomorphism h : M →M such that X ⊂ h(U). Generally h is required
to be ambient isotopic to the identity relative to the complement of a compact
subset of M .

Stallings and Zeeman compared U to a PL amoeba which expands in M until
it swallows X , provided that certain conditions of dimension, of connection and
of finiteness are satisfied. This is a good intuitive picture of engulfing in spite of
a slight inaccuracy due the fact that U may not be contained in h(U). When
Xx is fairly big, ie x = m − 3, the amoeba needs lots of help in order to be
able to swallow X . This kind of help is offered either by Zeeman’s sophisticated
piping technique or by Stallings’ equally sophisticated covering–and–uncovering
procedure. When X is even bigger, ie x ≥ m− 2, then the amoeba might have
to give up its dinner, as shown by examples constructed using the Whitehead
manifolds (1937) and Mazur manifolds (1961). See [Zeeman 1963].

There are many versions of engulfing according to the authors who formalised
them and to the specific objectives to which they were turned to. Our primary
purpose is to describe the engulfing technique and give all the necessary proofs,
with as little jargon as possible and in a way aimed at the quickest achievement
of the two highlights mentioned above. At the end of the section the interested
reader will find an appendix outlining the main versions of engulfing together
with other applications.
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We start here with a sketch of one of the highlights—the Hauptvermutung
for high-dimensional Euclidean spaces. Full details will be given later. The
uniqueness of the PL structure of Rm for m ≤ 3 has been proved by Moise
(1952), while the uniqueness of the differentiable structure is due to Munkres
(1960). J Stallings (1962) proved the PL and Diff uniqueness of Rm for m ≥ 5.
Stalling’s proof can be summarised as follows: start from a PL manifold, Mm ,
which is contractible and simply connected at infinity and use engulfing to prove
that each compact set C ⊂M is contained in an m–cell PL.

Now write M as a countable union M = ∪∞1 Ci of compact sets and inductively
find m–cells Di such that

◦
Di engulfs Ci−1 ∪ Di−1 . Then M is the union

D1 ⊂
◦
D2 ⊂ D2 ⊂

◦
D3 ⊂ · · · ⊂ Di ⊂

◦
Di+1 ⊂ · · · and it follows from Corollary

4.5 that M ≈PL Rm . If M has also a C∞ structure which is compatible with
the PL structure, then M is even diffeomorphic to Rm .

Exercise Show that PL engulfing is not possible, in general, if M has dimen-
sion four.

4.7 Engulfing in codimension 3

Zeeman observed that the idea behind an Engulfing Theorem is to convert a
homotopical statement into a geometric statement, in other words to pass from
Algebra to Geometry.

The fact that X is homotopic to zero in the contractible manifold M , ie, that
the inclusion X ⊂M is homotopic to a constant is a property which concerns
the homotopy groups exclusively. The fact that X is contained in a cell of M
is a much stronger property of purely geometrical character.

As a first illustratation of engulfing we consider a particular case of Stallings’
and Zeeman’s theorems.

Theorem Let Mm be a contractible PL manifold without boundary, and let
Xx be a compact subpolyhedron of M with x ≤ m− 3. Then X is contained
in an m–cell of M .

We will first prove the theorem for x < m − 3. The case x = m − 3 is rather
more delicate. We will need two lemmas, the first of which is quite general, as
it does not use the hypothesis of contractibility on M .

4.7.1 Lemma Suppose that X ↘ Y and let U be an open subset of M .
Then, if Y may be engulfed by U , X too may be engulfed. In particular, if Y
is contained in an m–cell of M , then so is X .
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Proof Without loss of generality, assume Y ⊂ U . The idea of the proof is
simple: while Y expands to X , it also pulls U with it.

a

b

x
A

B U

If we take an appropriate triangulation of (M,X,Y ), we can assume that
X ↘sY . By induction on the number of elementary collapses it will suffice
to consider the case when X ↘ Y is an elementary simplicial collapse. Sup-
pose that this collapse happens via the simplex A = aB from the free face B
of baricentre b.

Let L(B,M) be the link of B in M , which is a PL sphere so that bL(B,M)
is a PL disc D and S(B,M) = DḂ . Let x ∈ ab, be such that

axḂ ⊂ U.
There certainly exists a PL homeomorphism f : D → D with f(x) = b and
f |Ḋ = identity.

By joining f with 1Ḃ , we obtain a PL homeomorphism

h : S(B,M)→ S(B,M)

which is the identity on Ṡ(B,M) and therefore it extends to a PL homeomor-
phism hM : M →M which takes axḂ to A. Since

U ⊃ Y ∪ axḂ
we will have

hM (U) ⊃ Y ∪A = X.

Since hM is clearly ambient isotopic to the identity rel(M − S(B,M)),the
lemma is proved.

4.7.2 Lemma If Mm is contractible, then there exist subpolyhedra Y y , Zz ⊂
M so that X ⊂ Y ↘ Z and, furthermore:

y ≤ x+ 1
z ≤ 2x−m+ 3.
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Proof Let us consider a cone vX on X . Since X is homotopic to zero in M ,
we can extend the inclusion X ⊂ M to a continuous map f : vX → M . By
general position we can make f a PL map fixing the restriction f |X . Then we
obtain

dimS(f) ≤ 2(x+ 1)−m.

If vS(f) is the subcone of vX , it follows that

dim vS(f) ≤ 2x−m+ 3.

Take Y = f(vX) and Z = f(vS(f)).

Since a cone collapses onto a subcone we have

vX ↘ vS(f)

and, since vS(f) ⊃ S(f), we deduce that Y ↘ Z by Proposition 4.4. Since
f(X) = X , it follows that

X ⊂ Y ↘ Z ,

as required.

Proof of theorem 4.7 in the case x < m− 3 We will proceed by induction
on x, starting with the trivial case x = −1 and assuming the theorem true for
the dimensions < x.

By Lemma 4.7.2 there exist Y,Z ⊂M such that

X ⊂ Y ↘ Z

and z ≤ 2x−m+ 3 < x by the hypothesis x < m− 3.

Therefore Z is contained in a cell by the inductive hypothesis; by Lemma 4.7.1
the same happens for Y and, a fortiori, for X ⊂ Y . The theorem is proved.

H
Proof of theorem 4.7 in the case x = m− 3

This short proof was found by Zeeman in 1966 and communicated to Rourke
in a letter [Zeeman, letter 1966].3 The original proofs of Zeeman and Stallings
used techniques which are considerably more delicate. We will discuss them in
outline in the appendix.

Let f be a map in general position of the cone on X , CX , into M and let
S = S(f) ⊂ CX . Consider the projection p: S → X (projected down the
cone lines of CX ). Suppose that everything is triangulated. Then the top

3The letter is reproduced on Colin Rourke’s web page at:
http://www.maths.warwick.ac.uk/~cpr/Zeeman-letter.jpg

Geometry & Topology Monographs, Volume 6 (2003)



4 PL structure of Rm , Poincaré conjecture 31

dimensional simplexes of p(S) have dimension x − 1 and come in pairs τ1, τ2
where τi = p(σi), σi ∈ S , i = 1, 2, with f(σ1) = f(σ2) = fC(τ1) ∩ fC(τ2).

Now let Ni be the union of the open stars of all the τi for i = 1, 2 and let
Xi = X −Ni and X0 = X1 ∩X2 , ie X minus all the stars. Note that S meets
C(X0) in dimension ≤ x− 2.

Then X ⊂ X ∪ f(C(X2)) ↘ Z = X1 ∪ f(C(X0)), by collapsing the cones on
the stars of the τ1 ’s.

But Z ⊂ f(C(X1))↘ fC(X0), by collapsing the cones on the stars of the τ2 ’s.

Finally fC(X0) ↘ fC(S ∩ C(X0)) which has dimension ≤ x − 1 where we
have abused notation and written C(S ∩C(X0)) for the union of the cone lines
through S ∩ C(X0). We are now in codimension 4 and the earlier proof takes
over.

N
N1 X N2 N1 N2 N2 N2

f(σ1)=f(σ2)

fC(X) X ⊆ X ∪ f(C(X2))↘ X1 ∪ f(C(X0)) ⊆ fC(X1) ↘ fC(X0)

4.8 Hauptvermuting for Rm and the weak Poincaré conjecture

A topological space X is simply connected (or 1–connected) at infinity if, for each
compact subset C of X , there exists a compact set C1 such that C ⊂ C1 ⊂ X
and, furthermore, X − C1 is simply connected.

For example, Rm , with m > 2, is 1–connected at infinity, while R2 is not.

Observation Let X be 2–connected and 1–connected at infinity. Then for
each compact set C ⊂M there exists a compact set C1 such that C ⊂ C1 ⊂M
and, furthermore, (X,X − C1) is 2–connected.

Apply the homotopy exact sequence to the pair (X,X − C1) with C1 ⊃ C so
that X − C1 is 1–connected.

Stallings’ Engulfing Theorem Let Mm be a PL manifold without bound-
ary and let U be an open set of M . Let Xx be a closed subpolyhedron of M ,
such that

(a) (M,U) is x–connected,

(b) X ∩ (M − U) is compact,

(c) x ≤ m− 3.
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Then there exist a compact set G ⊂M and a PL homeomorphism h : M →M ,
such that

(1) X ⊂ h(U),

(2) h is ambient isotopic to the identity rel M −G

Proof Write X as X0 ∪ Y where X0 ⊂ U and Y is compact. We argue by
induction on the dimension y of Y . The induction starts with y = −1 when
there is nothing to prove. For the induction step there are two cases.

Case of codim ≥ 4 ie, y ≤ m− 4

Denote by Y ×′ I the result of squeezing (X0 ∩ Y )× I to X0 ∩ Y fibrewise in
Y × I . For i = 0, 1, continue to write Y × i for the image of Y × i under the
projection Y × I → Y ×′ I .

Since y ≤ x, by hypothesis (a) there is a map f : Y ×′ I → M such that
f | Y × 0 = id and f(Y × 1) ⊂ U . Put f in general position both as a map
and with respect to X . Let Σ ⊂ Y ×′ I be the preimage of the singular set,
which includes the points where the image intersects X0 . Define the shadow of
Σ, denoted Sh(Σ), to be {(y, t) | (y, s) ∈ Σ some s}. Then since Σ has codim
at least 3 in Y ×′ I , Sh(Σ) has codim at least 2 in Y ×′ I , ie dim ≤ y − 1.

Now write X ′0 = X0 ∪ f(Y × 1) and Y ′ = f(Sh(Σ)) and X ′ = X ′0 ∪ Y ′ , then
we have dim(Y ′) < y and

X ⊂ X ′′ = X ∪ f(Y ×′ I)↘ X ′

where the collapse is induced by cylindrical collapse of Y ×′ I − Sh(Σ) from
Y ×0 which is embedded by f . But by induction X ′ can be engulfed and hence
by lemma 4.7.1 so can X ′′ and hence X .

It remains to remark that the engulfing moves are induced by a finite collapse
and hence are supported in a compact set G as required.
H

Case of codim 3 ie, y = m− 3

The proof is similar to the proof of theorem 4.7 in the codim 3 case.

Let f and Σ be as in the last case and consider the projection p: Y ×′ I → Y .
Suppose that everything is triangulated so that X is a subcomplex and f and
p are simplicial. Then the top dimensional simplexes of p(Σ) have dimension
y − 1 and come in pairs τ1, τ2 where τi = p(σi), σi ∈ Σ, i = 1, 2, with
f(σ1) = f(σ2) = f(τ1 × I) ∩ f(τ2 × I).

Now let Ni be the union of the open stars of all the τi for i = 1, 2 and let
Yi = Y − Ni and Y0 = Y1 ∩ Y2 , ie Y minus all the stars. Note that Σ meets
Y0 ×′ I in dimension ≤ y − 2.

Geometry & Topology Monographs, Volume 6 (2003)



4 PL structure of Rm , Poincaré conjecture 33

Then X ⊂ X ∪ f(Y2 ×′ I ∪ Y × 1) ↘ Z = X0 ∪ f(Y0 ×′ I ∪ Y1 ∪ Y × 1), by
cylindrically collapsing the cylinders over the stars of the τ1 ’s from the 0–end.
But

Z ⊂ X0 ∪ f(Y1 ×′ I ∪ Y × 1)↘ T = X0 ∪ f(Y0 ×′ I ∪ Y × 1)

by similarly collapsing the τ2 × I ’s. Finally let Y ′ = Sh(Σ)∩ Y0×′ I which has
dimension < y and let X′0 = X0 ∪ f(Y × 1) and X′ = X′0 ∪ Y ′ . Then T ↘ X′

by cylindrically collapsing Y0 ×′ I − Sh(Σ).

But X′ can be engulfed by induction, hence so can T and hence Z and hence
X .

N

4.8.1 Note If we apply the theorem with X compact, M contractible and U
an open m–cell, we reobtain Theorem 4.7 above.

The following corollary is of crucial importance.

4.8.2 Corollary Let Mm be a contractible PL manifold, 1–connected at
infinity and C ⊂ M a compact set. Let T be a triangulation of M , and T 2

its 2–skeleton, m ≥ 5. Then there exists a compact set G1 ⊃ C and a PL
homeomorphism h1 : M →M , such that

T 2 ⊂ h1(M − C) and h1 fixes M −G1.

Proof By Observation 4.8 there exists a compact set C1 , with C ⊂ C1 ⊂ M
and (M,M − C1) 2–connected. We apply the Engulfing Theorem with U =
M − C1 and X = T 2 . The result follows if we take h1 = h and G1 = G ∪ C .
The condition m ≥ 5 ensures that 2 = x ≤ m− 3.

Note Since h1(M) = M , it follows that h1(C)∩T 2 = ∅. In other words there
is a deformation of M so that the 2–skeleton avoids C .

Theorem (PL uniqueness for Rm) Let Mm be a contractible PL manifold
which is 1–connected at infinity and with m ≥ 5. Then

Mm ≈PL Rm.
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Proof By the discussion in 4.6 it suffices to show that each compact subset of
M is contained in an m–cell in M . So let C ⊂ M be a compact set and T a
triangulation of M . First we apply Corollary 4.8.2 to T . Now let K ⊂ T be
the subcomplex

K = T 2 ∪ {simplexes of T contained in M −G1}.
Since T 2 ⊂ h1(M − C) and h1 fixes M −G1 , then necessarily

K ⊂ h1(M − C).

Now, if Y is a subcomplex of the simplicial complex X , the complementary
complex of Y in X , denoted X ÷ Y by Stallings, is defined as the subcomplex
of the barycentric subdivision X ′ of X which is maximal with respect to the
property of not intersecting Y . If Y contains all the vertices of X , then regular
neigbourhoods of the two complexes Y and X ÷ Y cover X . Indded the
1
2 –neighbourhoods of Y and X ÷ Y in have a common frontier since the 1–
simplexes of X ′ have some vertices in X and the rest in X ÷ Y .

Let L = T ÷ K . Then L is a compact polyhedron of dimension ≤ m − 3.
By Theorem 4.7, or Note 4.8.1, L is contained in an m–cell. Since K ⊂
h1(M − C) ⊂ M − h1(C), we have h1(C) ∩ K = ∅, therefore there exists a
ε–neighbourhood, Nε , of L in M such that

h1(C) ⊂ Nε ↘ L.

By Lemma 4.7.1 Nε , and therefore h1(C), is contained in an m–cell
◦
D . But

then h−1
1 (

◦
D) is an m– cell which contains C , as we wanted to prove.

Corollary (Weak Poincaré conjecture) Let Mm be a closed PL manifold
homotopically equivalent to Sm , with m ≥ 5. Then

Mm ≈Top S
m.

Proof If ∗ is a point of M , an argument of Algebraic Topology establishes
that M \ ∗ is contractible and simply connected at infinity. Therefore M is
topologically equivalent to the compactification of Rm with one point, ie to an
m–sphere.

4.9 The differentiable case

The reader is reminded that each differentiable manifold admits a unique PL
manifold structure which is compatible [Whitehead 1940]. We will prove this
theorem in the following sections. We also know that two differentiable struc-
tures on Rm are diffeomorphic if they are PL homeomorphic [Munkres 1960].

The following theorem follows from these facts and from what we proved forPL
manifolds.
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Theorem Let Mm be a differentiable manifold contractible and 1–connected
at infinity. Then if m ≥ 5,

Mm ≈Diff Rm.

Corollary (C∞ uniqueness for Rm) If m ≥ 5, Rm admits a unique differ-
entiable structure.

4.10 Remarks

These are wonderful and amazingly powerful theorems, especially so considering
the simple tools which formed the basis of the techniques used. It is worth re-
calling that combinatorial topology was revived from obscurity at the beginning
of the Sixties. When, later on, in a much wider, more powerful and sophisti-
cated context, we will reprove that a Euclidean space E , of dimension ≥ 5,
admits a unique PL or Diff structure simply because, E being contractible,
each bundle over E is trivial, some readers might want to look again at these
pages and these pioneers, with due admiration.

4.11 Engulfing in a topological product

We finish this section (apart from the appendix) with a simple engulfing the-
orem, whose proof does not appear in the literature, which will be used to
establish the important fibration theorem III.1.7.

4.11.1 Theorem Let Ww be a closed topological manifold with w 6= 3, let
Θ be a PL structure on W ×R and C ⊂W ×R a compact subset. Then there
exists a PL isotopy G of (W × R)Θ having compact support and such that
G1(C) ⊂W × (−∞, 0].

H
Proof For w = 2 the 3–dimensional Hauptvermutung of Moise implies that
(W × R)Θ is PL isomorphic to W × R, where W is a surface with its unique
PL structure. Therefore the result is clear.

Let now Q = (W × R)Θ and dim Q ≥ 5. If (a, b) is an interval in R we write
Q(a,b) for W × (a, b). Let U be the open set Q(−∞,0) and assume that C is
contained in Q(−r,r) . Write V for the open set Q(r,∞) so that V ∩C = ∅. We
want to engulf C into U .

Let T be a triangulation of Q by small simplexes, and let K be the smallest
subcomplex containing a neighbourhood of Q[−r,2r] . Let K2 be the 2–skeleton
and L be the complementary complex in K . Then L has codimension three.
Now consider V0 = Q(r,2r) in Q0 = Q(−∞,2r) and let L0 = L ∩ Q0 . The
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pair (Q0, V0) is ∞-connected. Therefore, by Stallings’ engulfing theorem, there
exists a PL homeomorphism j : Q0 → Q0 such that

(a) L0 ⊂ j(V0)

(b) there is an isotopy of j to the identity, which is supported by a compact
set.

It follows from (b) that j is fixed near level 2r and hence extends by the identity
to a homeomorphism of Q to itself such that j(V ) ⊃ L ∪Q[2r,∞] .

In exactly the same way there is a PL homeomorphism h: Q → Q such that
h(U) ⊃ K2 ∪ Q[−∞,−r] . Now h(U) and j(V ) contain all of Q outside K
and also neighbourhoods of complementary conplexes of the first derived of K .
By stretching one of these neighbourhoods we can assume that they cover K .
Hence we can assume h(U) ∪ j(V ) = Q. Then j−1 ◦ h(U) ∪ V = Q and it
follows that j−1 ◦h(U) ⊃ C . But each of j−1 , h is isotopic to the identity with
compact support. Hence there is an isotopy G with compact support finishing
with G1 = j−1 ◦ h and G1(C) ⊂ U .

N

Remark If W is compact with boundary the same engulfing theorem holds,
provided C ∩ ∂W ⊂ U .

4.12 Appendix: other versions of engulfing

This appendix, included for completeness and historical interest, discusses other
versions of engulfing and their main applications.

H
Engulfing à la Zeeman

Instead of Stallings’ engulfing by or into an open subset, Zeeman considers
engulfing from a closed subpolyhedron of the ambient manifold M .

Precisely, given a closed subpolyhedron C of M , we say that X may be engulfed
from C if X is contained in a regular neighbourhood of C in M .

Theorem (Zeeman) Let Xx , Cc be subpolyhedra of the compact mani-

fold M , with C closed and X compact, X ⊂
◦
M , and suppose the following

conditions are met:

(i) (M,C) is k–connected, k ≥ 0

(ii) there exists a homotopy of X into C which is modulo C

(iii) x ≤ m− 3; c ≤ m− 3; c+ x ≤ m+ k − 2; 2x ≤ m+ k − 2

Then X may be engulfed from C
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Zeeman considers also the cases in which X meets or is completely contained
in the boundary of M but we do not state them here and refer the reader to
[Zeeman 1963]. The above theorem is probably the most accurate engulfing
theorem, in the sense that examples show that its hypotheses cannot be weak-
ened. Thus no significant improvements are possible except, perhaps, for some
comments regarding the boundary.

Piping This was invented by Zeeman to prove his engulfing Theorem in codi-
mension three, which enabled him to improve the Poincaré conjecture from the
case n ≥ 7 to the case n ≥ 5.

A rigorous treatment of the piping construction—not including the preliminary
parts—occupies about twenty-five pages of [Zeeman 1963]. Here I will just try
to explain the gist of it in an intuitive way, using the terminology of isotopies
rather than the more common language of collapsing. As we saw earlier, Zeeman
[Letter 1966] found a short proof avoiding this rather delicate construction.

Instead of seeing a ball which expands to engulf X , change your reference system
and think of a (magnetized) ball U by which X is homotopically attracted. Let
f be the appropriate homotopy. On its way towards U , X will bump into lots
of obstacles represented by polyhedra of varying dimensions, that cause X to
step backward, curl up and take a different route. This behaviour is encoded
by the singular set S(f) of f . Consider the union T (f) of the shadow–lines
leading to these singularities.

If x < m − 3, then dimT (f) < x . Thus, by induction, T (f) may be engulfed
into U . Once this has been done, it is not difficult to view the remaining part
of the homotopy as an isotopy f ′ which takes X into U . Then any ambient
isotopy covering f ′ performs the required engulfing.

If x = m − 3, dimT (f) may be equal to dimX so that we cannot appeal to
induction. Now comes the piping technique. By general position we may obtain
that T (f) meets the relevant obstructing polyhedron at single points. Zeeman’s
procedure consists of piping away these points so as to reduce to the previous
easier case. The difficulty lies in the fact that the intersection– points to be
eliminated are essential, in the sense that they cannot be removed by a local
shift. On the contrary, the whole map f needs to be altered, and in a way such
that the part of X which is already covered by U be not uncovered during the
alteration.

Here is the germ of the construction.

Work in the homotopy cylinder on which f is defined. Let z be a bad point, ie,
a point of T (f) that gives rise to an intersection which we want to eliminate.
Once general position has been fully exploited, we may assume–to fix ideas–
that

(a) z lies above the barycenter a1 of a top–dimensional simplex A1 ∈ S(f)

such that there is exactly one other simplex A2 with f(
◦
A1) = f(

◦
A2);

moreover f is non degenerate and f(a1) = f(a2).
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(b) no bad points lie above the barycenter a2 .

Run a thin pipe from the top of the cylinder so as to pierce a hole around
the barycenter a2 . More precisely, take a small regular neighbourhood N of
the union with X × I with the shadow–line starting at a2 . Then consider the
closure V of X × [0, 1] − N in X × [0, 1]. Clearly V is a collar on X × 0.
Identify V with X× [0, 1] by a vertical stretch. This produces a new homotopy
f which takes X off the obstructing polyhedron. Now note that z is still there,
but, thanks to the pipe, it has magically ceased to be a bad point. In fact a1

is not in S(f) because its brother a2 has been removed by the pipe, so z does
not belong to the shadow–lines leading to S(f) and the easier case takes over.

A1
A2

a2
a1• •

•

N

V

z

1

0

We have skated over many things: one or both of A1 , A2 could belong to
X × 0, A2 could be a vertical simplex, in general there will be many pipes
to be constructed simultaneously, et cetera. But these constitute technical
complications which can be dealt with and the core of the piping argument is
the one described above.

The original proof of Stallings did not use piping but a careful inductive col-
lapsing procedure which has the following subtle implication: when the open
set U tries to expand to finally engulf the interior of the m − 3 simplexes of
X , it is forced to uncover the interior of some superfluous (m− 2)–simplexes
of M which had been previously covered.

To sum up, while in codimension > 3 one is able to engulf more than it is nec-
essary, in the critical codimension one can barely engulf just what is necessary,
and only after a lot of padding has been eliminated.

Engulfing à la Bing or Radial Engulfing

Sometimes one wants that the engulfing isotopy moves each point of X along
a prescribed direction.
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Theorem (Bing) Let {Aα} be a collection of sets in a boundariless PL
manifold Mm , let Xx ⊂ M be a closed subpolyhedron, x ≤ m − 4, U an
open subset of M with X ∩ (M −U) compact. Suppose that for each compact
y–dimensional polyhedron Y , y ≤ x , there exists a homotopy F of Y into U
such that, for each point y ∈ Y , F (y × [0, 1]) lies in one element of {Aα}.
Then, for each ε > 0, there is an ambient engulfing isotopy H of M satisfying
the condition that, for each point p ∈ M , there are x + 1 elements of {Aα}
such that the track H(p × [0, 1]) lies in an ε–neighbourhood of the union of
these x+ 1 elements.

For a proof see [Bing 1967].

There is also a Radial Engulfing Theorem for the codimension three, but it is
more complicated and we omit it [Bing op. cit.].

Engulfing by handle-moves

This idea is due to [Rourke–Sanderson 1972]. It does not lead to a different
engulfing theorem, but rather to an alternative method for proving the classi-
cal engulfing theorems. The approach consists of using the basic constructions
of Smale’s handle–theory (originally aimed at the proof of the h–cobordism
theorem), namely the elementary handle–moves, in order to engulf a given sub-
polyhedron of a PL manifold. Consequently it is an easy guess that the language
of cobordism turns out to be the most appropriate here.

Given a compact PL cobordism (V v,M0,M1), and a compact subpolyhedron X
of W , we say that X may be engulfed from the end M0 of V if X is contained
in a collar of M0 .

Theorem Assume X ∩M1 = ∅, and suppose that the following conditions
are met:

(i) there is a homotopy of X into a collar of M0 relative to X ∩M0

(ii) (V,M0) is k–connected

(iii) 2x ≤ v + k − 2 and x ≤ v − 3

Then X may be engulfed from M0

It could be shown that the main engulfing theorems previously stated, including
radial engulfing, may be obtained using handle–moves,with tiny improvements
here and there, but this is hardly worth our time here.

Topological engulfing

This was worked out by M Newman (1966) in order to prove the topological
Poincarè conjecture. E Connell (1967) also proved topological engulfing inde-
pendently, using PL techniques, and applied it to establish the weak topological
h–cobordism theorem.
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The statement of Newman’s theorem is completely analogous to Stallings’ en-
gulfing, once some basic notions have been extended from the PL to the topo-
logical context. We keep the notations of Stallings’ theorem. The concept of
p–connectivity for (M,U) must be replaced by that of monotonic connectivity.
The pair (M,U) is monotonically p–connected, if, given any compact subset
C of U , there exists a closed subset D of U containing C and such that
(M −D,U −D) is p–connected.

Assume that X is a polyhedron contained in the topological boundariless man-
ifold M . We say that X is tame in M if around each point x of X there is a
chart to Rm whose restriction to X is PL.

Theorem If (M,U) is monotonically x–connected and X is tame in M , then
there is an ambient compactly supported topological isotopy which engulfs X
into U .

See [Newman 1966] and [Connell 1967].

Applications

We conclude this appendix by giving a short list of the main applications of
engulfing.

• The Hauptvermutung for Rm (n ≥ 5) (Theorem 4.8) (Stallings’ or Zeeman’s
engulfing)

• Weak PL Poincarè conjecture for n ≥ 5 (Corollary 4.8) (Stallings’ or Zeeman’s
engulfing)

• Topological Poincarè conjecture for n ≥ 5 (Newman’s engulfing)

• Weak PL h–cobordism theorem for n ≥ 5 (Stallings’ engulfing)

• Weak topological h–cobordism theorem for n ≥ 5 (Newman’s or Connell’s
engulfing)

• Any stable homeomorphism of Rm can be ε–approximated by a PL homeomor-
phism (Radial engulfing)

• (Irwin’s embedding theorem) Let f : Mm → Qq be a map of unbounded PL
manifolds with M compact, and assume that the following conditions are met:

(i) q −m ≥ 3

(ii) M is (2m− q )–connected

(iii) Q is (2m− q + 1)–connected

Then f is homotopic to a PL embedding.

In particular:

(a) any element of πm(Q) may be represented by an embedding of an m–
sphere

(b) a closed k–connected m–manifold embeds in R2m−k , provided m−k ≥ 3.

The theorem may be proved using Zeeman’s engulfing

See [Irwin 1965],and also [Zeeman 1963] and [Rourke–Sanderson 1972].
N
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Part II : Microbundles

1 Semisimplicial sets

The construction of simplicial homology and singular homology of a simplicial
complex or a topological space is based on a simple combinatorial idea, that of
incidence or equivalently of face operator.

In the context of singular homology, a new operator was soon considered,
namely the degeneracy operator, which locates all of those simplices which
factorise through the projection onto one face. Those were, rightly, called de-
generate simplices and the guess that such simplices should not contribute to
homology turned out to be by no means trivial to check.

Semisimplicial complexes, later called semisimplicial sets, arose round about
1950 as an abstraction of the combinatorial scheme which we have just referred
to (Eilenberg and Zilber 1950, Kan 1953). Kan in particular showed that there
exists a homotopy theory in the semisimplicial category, which encapsulates the
combinatorial aspects of the homotopy of topological spaces [Kan 1955].

Furthermore, the semisimplicial sets, despite being purely algebraically defined
objects, contain in their DNA an intrinsic topology which proves to be extremely
useful and transparent in the study of some particular function spaces upon
which there is not given, it is not desired to give or it is not possible to give in
a straightforward way, a topology corresponding to the posed problem. Thus,
for example, while the space of loops on an ordered simplicial complex is not
a simplicial complex, it can nevertheless be defined in a canonical way as a
semisimplicial set.

The most complete bibliographical reference to the study of semisimplicial ob-
jects is [May 1967]; we also recommend [Moore 1958] for its conciseness and
clarity.

1.1 The semisimplicial category

Recall that the standard simplex ∆m ⊂ Rm is

∆m = {(x1, . . . , xm) ∈ Rm : xi ≥ 0 and Σxi ≤ 1} .
The vertices of ∆m are ordered 0, e1, e2, . . . , em , where ei is the unit vector
in the ith coordinate. Let ∆∗ be the category whose objects are the standard
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1 Semisimplicial sets 43

simplices ∆k ⊂ Rk (k = 0, 1, 2, . . .) and whose morphisms are the simplicial
monotone maps λ : ∆j → ∆k . A semisimplicial object in a category C is a
contravariant functor

X : ∆∗ → C.

If C is the category of sets, X is called a semisimplicial set. If C is the cate-
gory of monoids (or groups ), X is called a semisimplicial monoid (or group,
respectively).

We will focus, for the moment, on semisimplicial sets, abbreviated ss–sets.

We write X(k) instead of X(∆k) and call X(k) the set of k–simplices of X .
The morphism induced by λ will be denoted by λ# : X(k) → X(j) . A simplex
of X is called degenerate if it is of the form λ#τ , with λ non injective; if, on
the contrary, λ is injective, λ#τ is said to be a face of τ .

A simplicial complex K is said to be ordered if a partial order is given on its
vertices, which induces a total order on the vertices of each simplex in K . In
this case K determines an ss–set K defined as follows:

K(n) = {f : ∆n → K : f is a simplicial monotone map}.

If λ ∈ ∆∗ , then λ#f is defined as f ◦ λ. In particular, if ∆k is a standard
simplex, it determines an ss–set ∆k .

The most important example of an ss–set is the singular complex, Sing (A), of
a topological space A. A k–simplex of Sing (A) is a map f : ∆k → A and, if
λ : ∆j → ∆k is in ∆∗ , then λ#(f) = f ◦ λ.

We notice that, if A is a one–point set ∗, each simplex of dimension > 0 in
Sing (∗) is degenerate.

If X,Y are ss–sets, a semisimplicial map f : X → Y , (abbreviated to ss–map),
is a natural transformation of functors from X to Y . Therefore, for each k , we
have maps f (k) : X(k) → Y (k) which make the following diagrams commute

X(k)
f(k)

//

λ#

��

Y (k)

λ#

��
X(j)

f(j)
// Y (j)

for each λ : ∆j → ∆k in ∆∗ .
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Examples

(a) A map g : A→ B induces an ss–map Sing (A)→ Sing (B) by composition.

(b) If X is an ss–set, a k–simplex τ of X determines a characteristic map
τ : ∆k → X defined by setting

τ(µ) := µ#(τ).

The composition of two ss–maps is again an ss–map. Therefore we can define
the semisimplicial category (denoted by SS) of semisimplicial sets and maps.
Finally, there are obvious notions of sub ss–set A ⊆ X and pair (X,A) of
ss–sets.

1.2 Semisimplicial operators

In order to have a concrete understanding of the category SS we will examine
in more detail the category ∆∗ .

Each morphism of ∆∗ is a composition of morphisms of two distinct types:

(a) σi : ∆m → ∆m−1 , 0 ≤ i ≤ m− 1,

σ0(t1, . . . , tm) = (t2, . . . , tm)

σi(t1, . . . , tm) = (t1, . . . , ti−1, ti + ti+1, ti+2, . . . , tm) for i > 0

(b) δi : ∆m → ∆m+1 , 0 ≤ i ≤ m+ 1,

δ0(t1, . . . , tm) = (1−
∑n

1 ti, t1, . . . , tm).

δi(t1, . . . , tm) = (t1, . . . , ti−1, 0, ti, . . . , tm) for i > 0.

The morphism σi flattens the simplex on the face opposite the vertex vi , pre-
serving the order.

Example

v0

v1

v2 ∆1

σ0

σ0 : ∆2 → ∆1

The morphism δi embeds the simplex into the face opposite to the vertex vi .
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Example

v0 v1
v0

v1

v2

δ0

The following relations hold:
δjδi = δiδj−1 i < j

σjσi = σiσj+1 i ≤ j
σjδi = δiσj−1 i < j

σjδj = σjδj+1 = 1
σjδi = δi−1σj i > j + 1

If λ ∈ ∆∗ is injective, then λ is a composition of morphisms of type δi , other-
wise λ is a composition of morphisms σi and morphisms δj . Therefore, if X
is an ss–set and if we denote σ#

i by si and δ#
j by ∂j , we get a description of

X as a sequence of sets

X0 // X1oooo
//
// X

2oooo
oo

//
//
//
X3oooo

oooo

where the arrows pointing left are the face operators ∂j and the remaining
arrows are the degeneracy operators si . Obviously, we require the following
relations to hold:

∂i∂j = ∂j−1∂i i < j

sisj = sj+1si i ≤ j
∂jsj = ∂j+1sj = 1
∂isj = sj−1∂i i < j

∂isj = sj∂i−1 i > j + 1

In the case of the singular complex Sing (A), the map ∂i is the usual face
operator, ie, if f : ∆k → A is a k–singular simplex in A, then ∂if is the
(k−1)–singular simplex in A obtained by restricting f to the i–th face of ∆k :

∂if : ∆k−1 δi−→∆k f−→A.
On the other hand, sjf is the (k + 1)–singular simplex in A obtained by
projecting ∆k+1 on the j–th face and then applying f :

sjf : ∆k+1 σj−→∆k f−→A.
The following lemma is easy to check and the theorem is a corollary.
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Lemma (Unique decomposition of the morphisms of ∆∗ ) If ϕ is a morphism
of ∆∗ , then ϕ can be written, in a unique way, as

ϕ = (δi1 ◦ δi2 ◦ · · · ◦ δip)︸ ︷︷ ︸
injective

◦ (sj1 ◦ · · · ◦ sjt)︸ ︷︷ ︸
surjective

= ϕ1 ◦ ϕ2.

Theorem (Eilenberg–Zilber) If X is an ss–set and θ is an n–simplex in X ,
then there exist a unique non-degenerate simplex τ and a unique surjective
morphism µ ∈ ∆∗ , such that

µ∗(τ) = θ.

1.3 Homotopy

If X,Y are ss–sets, their product, X × Y , is defined as follows:

(X × Y )(k) := X(k) × Y (k)

λ#(x, y) := (λ#x, λ#y)

Example Sing (A×B) ≈ Sing (A)× Sing (B).

Let us write I = ∆1 , I = ∆1 . Then I has three non-degenerate simplices, ie
0, 1, I , or, more precisely, ∆0 → 0, ∆0 → 1, ∆1 → I . Write 0 for the ss–set
obtained by adding to the simplex 0 all of its degeneracies, corresponding to
the simplicial maps

∆k → 0, (1.3.1)

k = 1, 2, . . . . Hence, 0 has a k–simplex in each dimension. For k > 0, the
k–simplex is degenerate and it consists of the singular simplex (1.3.1).

Proceed in a similar manner for 1. One could also say, more concisely,

0 = Sing (0) 1 = Sing (1).

Now, let f0, f1 : X → Y be two semisimplicial maps.

A homotopy between f0 and f1 is a semisimplicial map

F : I×X → Y

such that F |0×X = f0 and F |1×X = f1 through the canonical isomorphisms
0×X ≈ X ≈ 1×X .

In this case, we say that f0 is homotopic to f1 , and write f0 ' f1 . Unfor-
tunately homotopy is not an equivalence relation. Let us look at the simplest
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situation: X = ∆0 . Suppose we have two homotopies F,G: I → Y , with
F (1) = G(0). If we set F (I) = y0 ∈ Y (1) and G(I) = y1 ∈ Y (1) , we have

∂0y0 = ∂1y1.

What transitivity requires, is the existence of an element y′ ∈ Y (1) such that

∂1y
′ = ∂1y0 ∂0y

′ = ∂0y1.

In general such an element does not exist.

y0

y1

y′

∂0y1

∂1y0

∂0y0 = ∂1y1

It was first observed by Kan (1957) that this difficulty can be avoided by as-
suming in Y the existence of an element y ∈ Y (2) such that

y0 = ∂2y and y1 = ∂0y

y0

y1

∂1y=y′
y

∂0y1

∂1y0

If such a simplex y exists, then y′ = ∂1y is the simplex we were looking for. In
fact

∂1y
′ = ∂1∂1y = ∂1∂2y = ∂1y0

∂0y
′ = ∂0∂1y = ∂0∂0y = ∂0y1.

We are now ready for the general definition:

Definition An ss–set Y satisfies the Kan condition if, given simplices

y0, . . . , yk−1, yk+1, . . . , yn+1 ∈ Y (n)

such that ∂iyj = ∂j−1yi for i < j and i, j 6= k , there exists y ∈ Y (n+1) such
that ∂iy = yi for i 6= k .
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Such an ss–set is said to be Kan. We shall prove later that for semisimplicial
maps with values in a Kan ss–set, homotopy is an equivalence relation. [f ]SS ,
or [f ] for short, denotes the homotopy class of f . We abbreviate Kan ss–set
to kss–set.

Example Sing (A) is a kss–set. This follows from the fact that the star
S(v, ∆̇) is a deformation retract of ∆ for each vertex v ∈ ∆ = ∆n .

v

n = 3

The union of three faces of the pyramid is a retract of the whole pyramid.

Exercise If ∆ is a standard simplex, a horn Λ of ∆ is, by definition, the star
S(v, ∆̇), where v is a vertex of ∆. Check that an ss–set X is Kan if and only
if each ss–map Λ→ X extends to an ss–map ∆→ X .

This exercise gives us an alternative definition of a kss–set.

Note The extension property allowed D M Kan to develop the homotopy the-
ory in the whole category of ss–sets. The original work of Kan in this direction
was based on semicubical complexes, but it was soon clear that it could be trans-
lated to the semisimplicial environment. For technical reasons, the category of
ss–sets replaced the analogous semicubical category, which, recently, regained
a certain attention in several contexts, not the least in computing sciences.

In brief the greatest inconvenience in the semicubical category is the fact that
the cone on a cube is not a combinatorial cube, while the cone on a simplex is
still a simplex.

1.4 The topological realisation of an ss–set (Milnor 1958)

Let X be an ss–set and
X =

∐
n

∆n ×X(n),

where X(n) has the discrete topology and
∐

denotes the disjoint union.
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We define the topological realisation of X , written |X|, to be the quotient
space of X with respect to the equivalence relation generated by the following
identifications

(t, λ#θ) ∼ (λ(t), θ),

where t ∈ ∆n , λ ∈ ∆∗ and θ ∈ X .

Thus, the starting point is an infinite union of standard simplices each labelled
by an element of X. We denote those simplices by ∆n

θ instead of ∆n × θ
(θ ∈ X(n)).

The relation ∼ is defined on labelled simplices by using the composition of the
two elementary operations (a) and (b) described below. Let us consider ∆n−1

τ

and ∆n
θ :

(a) if τ = ∂iθ for some i = 0, . . . , n, then ∼ identifies ∆n−1
τ to ∂i(∆n

θ ), ie,
∼ glues to each simplex its faces

(b) if τ = sjθ for some j = 0, . . . , n− 1, then ∼ squeezes the simplex ∆n
θ on

its j–th face, which in turn is identified with ∆n−1
τ .

0

1

2

0

1

∆n
θ

∆n−1
τ

j = 0

As a result |X| acquires a cw–structure, with a k–cell for each non degenerate
k–simplex of X with a canonical characteristic map ∆k → X .

Examples

(a) If K is a simplicial complex and K is its associated ss–set, then |K| = K .
In particular

|∆n| = ∆n, |I| = I = [0, 1], |0| = 0 ; |1| = 1.

(b) |Sing (∗)| = ∗.
(c) In general it can be proved that, for each cw–complex X , the realisation
|Sing (X)| is homotopicy equivalent to X by the map

[t, θ] 7→ θ(t)
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where θ : ∆n → X and t ∈ ∆n and [ ] indicates equivalence class in |Sing (X)|.
(d) If X,Y are ss–sets then |X × Y | can be identified with |X| × |Y |.

1.5 Approximation

Now we want to describe the realisation of an ss–map. If f : X → Y is such a
map, we define its realisation |f | : |X| → |Y | by setting

[t, θ] 7→ [t, f(θ)].

Clearly |f | is well defined, since if [t, θ] = [s, τ ] and there is µ ∈ ∆∗ , with
µ#(τ) = θ and µ(t) = s, then

|f |[t, θ] = [t, f(θ)] = [t, f(µ#(τ))] = [t, µ#f(τ)] =
= [µ(t), f(τ)] = |f |[µ(t), τ ] = |f |[s, τ ].

We say that a (continuous) map h : |X| → |Y | is realized if h = |f | for some
f : X → Y .

The following result is very useful.

Semisimplicial Approximation Theorem Let Z ⊂ X and Y be ss–sets,
with Y a kss–set, and let g : |X| → |Y | be such that its restriction to |Z| is
the realisation of an ss–map. Then there is a homotopy

g ' g′ rel |Z|
such that g′ is the realisation of an ss–map.

A very short and elegant proof of the approximation theorem is due to [Sander-
son 1975].

1.5.1 Corollary Let Y be a kss–set. Two ss–maps with values in Y are
homotopic if and only if their realisations are homotopic.

1.5.2 Corollary Homotopy between ss–maps is an equivalence relation, if
the codomain is a kss–set.

This is the result announced after Definition 1.3.

Exercise Convince yourself that an ordered simplicial complex seldom satisfies
the Kan condition.

It is not a surprise that the semisimplicial approximation theorem provides a
quick proof of Zeeman’s relative simplicial approximation theorem (1964), given
here in an intrinsic form:
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Theorem (Zeeman 1959) Let X,Y be polyhedra, Z a closed subpolyhedron
in X and let f : X → Y be a map such that f |Z is PL. Then, given ε > 0,
there exists a PL map g : X → Y such that

(1) f |Z = g|Z (2) dist (f, g) < ε (3) f ' g relZ.

The above theorem is important because, as observed by Zeeman himself, if L ⊂
K and T are simplicial complexes, a standard result of Alexander (1915) tells
us that each map f : |K| → |T |, with f |L simplicial, may be approximated by a
simplicial map g : K ′ → T , where K ′ /K such that f |L in turn is approximated
by g|L′ . However, while this is sufficient in algebraic topology, in geometric
topology we frequently need the strong version

f |L′ = g|L′.

The interested reader might wish to consult [Glaser 1970, pp. 97–103], [Zeeman
1964].

1.6 Homotopy groups

If X is an ss–set, we call the base point of X a 0–simplex ∗X ∈ X(0) or,
equivalently, the sub ss–set ∗ ⊂ X , generated by ∗X . An ss–map f : X → Y
is a pointed map if f(∗X) = ∗Y .

As a consequence of the semisimplicial approximation theorem, the homotopy
theory of ss–sets coincides with the usual homotopy theory of their realisations.

More precisely, let X,Y be pointed ss–sets, with ∗ ⊂ Y ⊂ X . We define
homotopy groups by setting

πn(X, ∗) := πn(|X|, ∗)
πn(X,Y ; ∗) := πn(|X|, |Y |, ∗).

We recall that from the approximation theorem that, if K is a simplicial com-
plex and X a kss–set, then each map f : K → |X| is homotopic to a map
f ′ : K → |X| which is the realisation of an ss–map. Moreover, if f is already
the realisation of a map on the subcomplex L ⊂ K , the homotopy can be taken
to be constant on L. This property allows us to choose, according to our needs,
suitable representatives for the elements of πn(X, ∗). As an example, we have:

πn(X, ∗) := [In, İn;X, ∗]SS = [∆n, ∆̇n;X, ∗]SS = [Sn, 1;X, ∗]SS,

where In , or Sn , is given the structure of an ss–set by any ordered triangula-
tion, which is, for convenience, very often omitted in the notation.
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1.7 Fibrations

An ss–map p : E → B is a Kan fibration if, for each commutative square of
ss–maps

Λ //
_�

��

E

p

��
∆ //

??�
�

�
�

B

there exists an ss–map ∆ → E , which preserves commutativity. Here ∆ and
Λ represent a standard simplex and one of its horns respectively.

An equivalent definition of Kan fibration is the following: if x ∈ Bq+1 and
y0, . . . , yk−1, yk+1, . . . , yq+1 ∈ E(q) are such that p(yi) = ∂ix and ∂iyj = ∂i−1yi
per i < j and j 6= k , then there is y ∈ E(q+1) , such that ∂iy = yi , for i 6= k
and p(y) = x.

If F is the preimage in E of the base point, then F is an ss–set, known as the
fibre over ∗.

Lemma Let p : E → B be a Kan fibration:

(a) if F is the fibre over a point in B , then F is a kss–set,

(b) if p is surjective, E is Kan if and only if B is Kan.

The proof is left to the reader, who may appeal to [May 1967, pp. 25–27].

Theorem [Quillen 1968] The geometric realisation of a Kan fibration is a
Serre fibration.

Remark Quillen’s proof is very short, but it relies on the theory of minimal
fibrations, which we will not introduce in our brief outline of the ss–category as
it it is not explicitly used in the rest of the book. The same remark applies to
Sanderson’s proof of the simplicial approximation lemma. We refer the reader
to [May 1967, pages 35–43]

As a consequence of this theorem and the definition of homotopy groups we
deduce that, provided p : E → B is a Kan fibration with B a kss–set, the
there is a homotopy long exact sequence:

· · · −→ πn(F ) −→ πn(E)
p∗−→πn(B) −→ πn−1(F ) −→ · · ·

Suppose now that we have two ss–fibrations pi : Ei → Bi (i = 1, 2) and let
f : E1 → E2 be an ss–map which covers an ss–map f0 : B1 → B2 . Assume
all the ss–sets are Kan and fix a base point in each path component so that
pi, f, f0 are pointed maps.
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Proposition Let pi, f, f0 be as above. Any two of the following properties
imply the remaining one:

(a) f is a homotopy equivalence,

(b) f0 is a homotopy equivalence,

(c) the restriction of f to the fibre of E1 over the base point of each path
component B1 is a homotopy equivalence with the corresponding fibre of
E2 .

Proof This result is an immediate consequence of the long exact sequence in
homotopy, Whitehead’s Theorem and the Five Lemma.

1.8 The homotopy category of ss–sets

Although it will be used very little, the content of this section is quite important,
as it clarifies the role of the category of ss–sets in homotopy theory.

We denote by SS (resp KSS) the category of ss–sets (resp kss–sets) and ss–
maps, and by CW the category of cw-complexes and continuous maps.

The geometric realisation gives rise to a functor | | : SS → CW . We also
consider the singular functor S : CW→ SS.

Theorem (Milnor) The functors | | and S induce inverse isomorphisms be-
tween the homotopy category of kss–sets and the homotopy category of cw–
complexes:

h KSS
| |

// h CW
S

oo

For a full proof, see, for instance, [May 1967, pp. 61–62].

Hence, there is a natural bijection between the homotopy classes of ss–maps
[Sing (X), Y ] and the homotopy classes of maps [X, |Y |], provided that X has
the homotopy type of a cw–complex and Y is a kss–set. Sometimes, we write
just [X,Y ] for either set.

In conclusion, as indicated earlier, we observe that the semisimplicial structure
provides us with a simple, safe and effective way to introduce a good topology,
even a cw structure, on the PL function spaces that we will consider. This
topology will allow the application of tools from classical homotopy theory.

Terminology For convenience, whenever there is no possibility of misunder-
standings we will confuse X and its realisation |X|. Moreover, unless otherwise
stated, all the maps from |X| to |Y | are always intended to be realised and,
therefore, abusing language, we will refer to such maps as semisimplicial maps.
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2 Topological and PL microbundles

Each smooth manifold has a well determined tangent vector bundle. The same
does not hold for topological manifolds. However there is an appropriate gener-
alisation of the notion of a tangent bundle, introduced by Milnor (1958) using
microbundles.

2.1 Topological microbundles

A microbundle ξ , with base a topological space B , is a diagram of maps

B
i−→E p−→ B

with p ◦ i = 1B , where i is the zero–section and p is the projection of ξ .

A microbundle is required to satisfy a local triviality condition which we will
state after some examples and notation.

Notation We write E = E(ξ), B = B(ξ), p = pξ , i = iξ etc. We also write
ξ/B and E/B to refer to ξ . Further B is often identified with i(B).

Examples

(a) The product microbundle, with fibre Rm and base B , is given by

εmB : B i−→B × Rm π1−→B
with i(b) = (b, 0) and π1(b, v) = b.

(b) More generally, any vector bundle with fibre Rm is, in a natural way, a
microbundle.

(c) If M is a topological manifold without boundary, the tangent microbundle
of M , written TM , is the diagram

M
∆−→M ×M π1−→M

where ∆ is the diagonal map and π1 is the projection on the first factor.
a

a

b b

T (S1 × S1)
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Microbundles maps

2.2 An isomorphism, between microbundles on the same base B ,

ξα : B iα−→Eα
pα−→B (α = 1, 2),

is a commutative diagram

V1

p1

  @
@@

@@
@@

ϕ

��

B

i1
>>~~~~~~~

i2   @
@@

@@
@@

B

V2

p2

>>~~~~~~~

where Vα is an open neighbourhood of iα(B) in Eα and ϕ is a homeomorphism.

2.2.1 In particular, if E/B is a microbundle and U is an open neighbourhood
of i(B) in E , then U/B is a microbundle isomorphic to E/B .

Exercise

Prove that, if M is a smooth manifold, its tangent vector bundle and its tangent
microbundle are isomorphic as microbundles.

Hint Put a metric on M . If the points x, y ∈ M are close enough, consider
the unique short geodesic from x to y and associate to (x, y) the pair having
x as first component and the velocity vector at x as second component.

Observation Any (Rm, 0)–bundle on B is a microbundle, and isomorphic
bundles are isomorphic as microbundles.

2.3 More generally, a microbundle map

ξα : Bα
iα−→Eα

pα−→Bα α = 1, 2

is a commutative diagram

B1
i1 //

f

��

E1
p1 //

f

��

B1

f

��
B2 i2

// E2 p2
// B2
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where V1 is an open neighbourhood of i1(B1) in E1 and f , f are continu-
ous maps. We write f : ξ1 → ξ2 meaning that f covers f : B1 → B2 . Oc-
casionally, in order to be more precise, we will write (f , f): ξ1 → ξ2 . For
isomorphisms we shall use the imprecise notation since, by definition, each iso-
morphism ρ: ξ1/B ≈ ξ2/B covers 1B .

A map f : M → N of topological manifolds induces a map between tangent
microbundles

df : TM → TN,

known as the differential of f and defined as follows

M
∆ //

f

��

M ×M //

f×f
��

M

f

��
N

∆ // N ×N // N

Note As we have already observed, each microbundle is isomorphic to any
open neighbourhood of its zero–section; in other words, what really matters in
a microbundle is its behaviour near its zero–section.

In particular, the tangent microbundle TM can, in principle, be constructed by
choosing, in a continuous way, a chart Ux around x as a fibre over x ∈M. Yet,
as we do not have canonical charts for M , such a choice is not a topological
invariant of M : this is where the notion of microbundle comes in to solve the
problem, telling us that we are not forced to select a specific chart Ux , since a
germ of a chart (defined below) is sufficient. The name microbundle is due to
Arnold Shapiro.

2.4 Induced microbundle

If ξ is a microbundle on B and A ⊂ B , the restriction ξ|A is the microbundle
obtained by restricting the total space, ie,

ξ|A : A→ p−1
ξ (A)

pξ−→A
More generally, if ξ/B is a microbundle and f : A → B is a map of topologi-
cal spaces, the induced microbundle f∗(ξ) is defined via the usual categorical
construction of pull–back of the map pξ over the map f .

Example If f : M → N is a map of topological manifolds, then f∗(TN) is
the microbundle

M
i−→M ×N π1−→M

with i(x) = (x, f(x)).

Geometry & Topology Monographs, Volume 6 (2003)



2 Topological and PL microbundles 57

2.5 Germs

Two microbundle maps (f , f): ξ1 → ξ2 and (g, g): ξ1 → ξ2 are germ equivalent
if f and g agree on some neighbourhood of B1 in E1 . The germ equivalence
class of (f , f) is called the germ of (f , f) or less precisely the germ of f .
The notion of the germ of a map (or isomorphism) is far more useful and
flexible then that of map or isomorphism of microbundles because unlike maps
and isomorphisms, germs can be composed. Therefore we have the category of
microbundles and germs of maps of microbundles.

From now on, unless there is any possibility of confusion, we will use inter-
changeably, both in the notation and in the exposition, the germs and their
representatives.

2.6 Local triviality

A microbundle ξ/B is locally trivial, of dimension or rank m, or, more simply,
an m–microbundle, if it is locally isomorphic to the product microbundle εmB .
This means that each point of B has a neighbourhood U in B such that
εmU ≈ ξ|U .

An m–microbundle ξ/B is trivial if it is isomorphic to εmB .

B

ξ locally trivial

a

a

A non trivial microbundle on S1
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Examples

(a) The tangent microbundle TMm is locally trivial of rank m.

In fact, let x ∈ M and (U,ϕ) be a chart of M on a neighbourhood of x such
that ϕ(U) ⊂ Rm . Define hx : U × Rm → U × U near U × 0 by

hx(u, v) = (u, ϕ−1(ϕ(u) + v)).

(b) If ξ/B is an m–microbundle and f : A→ B is continuous, then the induced
microbundle f∗(ξ) is locally trivial. This follows from two simple facts:

(1) If ξ is trivial, then f∗(ξ) is trivial.

(2) If U ⊂ B and V = f−1(U) ⊂ A, then

f∗(ξ)|V = (f |V )∗(ξ|U).

Terminology From now on the term microbundle will always mean locally
trivial microbundle.

2.7 Bundle maps

With the notation used in 2.3, the germ of a map (f , f) of m–microbundles
is said to be locally trivial if, for each point x, of B1 , f restricts to a germ
of an isomorphism of ξ1|x and ξ2|f(x). Once the local trivialisations have
been chosen this germ is nothing but a germ of isomorphism of (Rm, 0) (as a
microbundle over 0) to itself.

A locally trivial map is called a bundle map. Thus a map is a bundle map
if, restricted to a convenient neighbourhood of the zero-section, it respects the
fibres and it is an open topological embedding on each fibre. Note that an
isomorphism between m–microbundles is automatically a bundle map.

Terminology We often refer to an isomorphism between m–microbundles as
a micro–isomorphism.

Examples

(a) If f : M → N is a homeomorphism of topological manifolds, its differential
df : TM → TN is a bundle map. It will be enough to observe that, since it
is a local property, it is sufficient to consider the case of a homeomorphism
f : Rm → Rm . This is a simple exercise.

(b) Going back to the induced bundle, there is a natural bundle map f : f∗(ξ)→
ξ . The universal property of the fibre product implies that f is, essentially, the
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only example of a bundle map. In fact, if f ′ : η → ξ is a bundle map which covers
f , then there exists a unique isomorphism h : η → f∗(ξ) such that f ◦ h = f ′ :

η h //

f ′
!!B

BB
BB

BB
BB

f∗(ξ)

f

��
ξ

(c) It follows from (b) that if f : A → B is a continuous map then each iso-
morphism ϕ: ξ1/B → ξ2/B induces an isomorphism f∗(ϕ): f∗(ξ1)→ f∗(ξ2).

2.8 The Kister–Mazur theorem.

Let ξ : B i−→E p−→B be an m–microbundle, then we say that ξ admits or con-
tains a bundle, if there exists an open neighbourhood E1 of i(B) in E , such
that p : E1 → B is a topological bundle with fibre (Rm, 0) and zero–section
i(B). Such a bundle is called admissible.

The reader is reminded that an isomorphism of (Rm, 0)–bundles is a topological
isomorphism of Rm–bundles, which is the identity on the 0–section.

Theorem (Kister, Mazur 1964) If an m–microbundle ξ has base B which
is an ENR then ξ admits a bundle, unique up to isomorphism.

The reader is reminded that ENR is the acronym for Euclidean Neighbourhood
Retract and therefore the result is valid, in particular, in those cases when B is a
locally finite Euclidean polyhedron or a topological manifold. The proof of this
difficult theorem, for which we refer the reader to [Kister 1964], is based upon
a lemma which is interesting in itself. Let G0 be the space of the topological
embeddings of (Rm, 0) in itself with the compact open topology and let H0 be
the subspace of proper homeomorphisms of (Rm, 0). The lemma states that H0

is a deformation retract of G0 , ie, there exists a continuous map F : G0×I → G0

so that F (g, 0) = g , F (g, 1) ∈ H0 for each g ∈ G0 and F (h, t) ∈ H0 for each
t ∈ I and h ∈ H0 .

In the light of this result it makes sense to expect the fact that two admissible
bundles are not only isomorphic but even isotopic. This fact is proved by Kister.

Note In principle Kister’s theorem would allow us to work with genuine Rm–
bundles which are more familiar objects than microbundles. In fact, according
to definition 2.5, a microbundle ξ is micro-isomorphic to each of its admissible
bundles.
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It is not surprising if Kister’s discovery took, at first, some of the sparkle from
the idea of microbundle. Nevertheless, it is in the end convenient to maintain
the more sophisticated notion of microbundle, since, for instance, the tangent
microbundle of a topological manifold is a canonical object while the admissible
tangent bundle is defined only up to isomorphism.

2.9 Microbundle homotopy theorem

The microbundle homotopy theorem states that each microbundle ξ/X × I ,
where X is a paracompact Hausdorff space, admits an isomorphism ϕ: ξ ≈
η × I , where η is a copy of ξ|X × 0. There is also a relative version of this
result, where, given C a closed subset of X and an isomorphism ϕ′ : (ξ|U)× I ,
where U is an open neighbourhood of C in X , it is possible to chose ϕ to
coincide with ϕ′ on an appropriate neighbourhood of C .

Kister’s result reduces this theorem to the analogous and more familiar result
concerning bundles with fibre Rm [cf Steenrod 1951, section 11].

The following important property follows immediately from the homotopy the-
orem.

Proposition If f, g are continuous homotopic maps, of a paracompact Haus-
dorff space X to Y and if ξ/Y is an m–microbundle, then f∗(ξ) ≈ g∗(ξ).

2.10 PL microbundles

The category of PL microbundles and maps is defined in analogy to the corre-
sponding topological case using polyhedra and PL maps, with obvious changes.
For example, each PL manifold without boundary M admits a well defined PL
tangent microbundle given by

M
∆−→M ×M π1−→M .

A PL map f : Mm → Nm induces a differential df : TM → TN , which is a PL
map of PL m–microbundles. The PL microbundle f∗(ξ), induced by a PL map
of polyhedra, is defined in the usual way through the categorical construction
of the pullback and the natural map f∗(ξ) → ξ is locally trivial (ie is a PL
bundle map) if ξ is locally trivial.

As it the topological case PL microbundle will always mean PL locally trivial
microbundle.

The PL version of Kister–Mazur theorem is proved in [Kuiper–Lashof 1966].

Finally, the homotopy theorem for the PL case asserts that, if X is a polyhedron,
then ξ/X × I ≈ η × I , with η = ξ|X × 0. Nevertheless the proposition that
follows from it is less obvious than its topological counterpart.
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Proposition Let f, g : X → Y be PL maps of polyhedra and assume that
f, g are continuously homotopic. Let ξ/Y be a PL m–microbundle. Then

f∗(ξ) ≈PL g
∗(ξ).

Proof Let F : X × I → Y be homotopy of f and g . By Zeeman’s relative
simplicial approximation theorem, there exists a homotopy F ′ : X × I → Y of
f and g , with F ′ a PL map. The remaining part of the proof is then clear.
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3 The classifying spaces BPLm and BTopm

Now we want to prove the existence of classifying spaces for PL m–microbundles
and topological m–microbundles. The question fits in the general context of
the construction of the classifying space BG of a simplicial group (monoid) G.
On this problem, at the time, a large amount of literature was produced and
of this we will just cite, also making a reference for the reader, [Eilenberg and
MacLane 1953, 1954], [Maclane 1954], [Heller 1955], [Milnor 1961], [Barratt,
Gugenheim and Moore 1959], [May 1967], [Rourke and Sanderson 1971]. The
first to construct a semisimplicial model for BPLm and BTopm was Milnor
prior to 1961.

The semisimplicial groups Topm and PLm

3.1 We remind the reader that a semisimplicial group G is a contravariant
functor from the category ∆∗ to the category of groups. From now on em will
denote the identity in G(m) = G(∆m).

We define the ss–set Topm to have typical k–simplex ϕ a micro-isomorphism

ϕ: ∆k × Rm → ∆k × Rm.

For each λ : ∆l → ∆k in ∆∗ , we define

λ# : Top(k)
m → Top(l)

m

by setting λ#(ϕ) to be equal to the micro-isomorphism induced by ϕ according
to 2.7 (c):

∆l × Rm
λ#(ϕ)

//

λ×1

��

∆l × Rm

λ×1

��
∆k × Rm ϕ

// ∆k × Rm

The operation of composition of micro-isomorphisms makes Top(k)
m into a group

and λ# a homomorphism of groups. Therefore Topm is a semisimplicial group.

3.2 In topological m–microbundle theory Topm plays the role played by the
linear group GL(m,R) in vector bundle theory. Furthermore it can be thought
of as the singular complex of the space of germs of the homeomorphisms of
(Rm, 0) to itself.
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3 The classifying spaces BPLm and BTopm 63

3.3 Since |∆k| ≈ |Λk × I|, it follows that Topm satisfies the Kan condition.
On the other hand we have the following general result, whose proof is left to
the reader.

Proposition Each semisimplicial group satisfies the Kan condition.

Proof See [May 1967, p. 67].

3.4 The semisimplicial group PLm is defined in a totally analogous manner
and, from now on, the exposition will concentrate on the PL case.

3.5 Steenrod’s criterion

The classification of bundles of base X in the classical approach of [Steenrod
1951] is done through the following steps:

(a) there is a one to one canonical correspondence

[Rm–vector bundles] ≡ [GL(m,R)–principal bundles]

More generally

[bundles with fibre F and structure group G] ≡ [G–principal bundles]

where [ ] indicates the isomorphism classes;

(b) recognition criterion: there exists a classifying principal bundle

γG : G→ EG→ BG

which is characterised by the fact that E is path connected and πq(E) = 0
if q ≥ 1. The homotopy type of BG is well defined and it is called the
classifying space of the group G, or also classifying space for principal
G–bundles with base a cw–complex.

The correspondence (a) assigns to a bundle ξ , with group G and fibre F , the
associated principal bundle Princ(ξ), which is obtained by assuming that the
transitions maps of ξ do not operate on F any longer but operate by translation
on G itself. The inverse correspondence assigns to a principal G–bundle, E/X ,
the bundle obtained by changing the fibre, ie the bundle

F → E ×G F → X.

It follows that by changing the fibre of γG , we obtain the classifying bundle for
the bundles with group G and fibre F , so that BG is the classifying space also
for those bundles. Obviously we are assuming that there is a left action of G
on the space F , which is not necessarily effective, so that

E ×G F := E × F/(xg, y) ∼ (x, gy), y ∈ F.
We will follow the outline explained above adapting it to the semisimplicial
case.
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3.6 Semisimplicial principal bundles

Let G be a semisimplicial group. Then a free action of G on the ss–set E is an
ss–map E ×G → E , such that, for each θ ∈ E(k) and g′, g′′ ∈ G(k) , we have:
(a) (θg′)g′′ = θ(g′g′′); (b) θek = θ ; (c) θg′ = θg′′ ⇔ g′ = g′′ .

The space X of the orbits of E with respect to the action of G is an ss–set and
the natural projection p : E → X is called a G–principal bundle. The reader
can observe that neither E , nor X are assumed to be Kan ss–sets.

Proposition p : E → X is a Kan fibration.

Proof Let Λk be the k–horn of ∆k , ie Λk = S(vk, ∆̇k). We need to prove the
existence of a map α which preserves the commutativity of the diagram below.

Λk γ
//

_�

��

E

p

��
∆

α //

α

??~
~

~
~

X

To start with consider any lifting α′ of α, which is not necessarily compatible
with γ. Let ε : Λk → G be defined by the formula

α′(x)ε(x) = γ(x).

Since G satisfies the Kan condition, ε extends to ε : ∆k → G. If we set

α(x) := α′(x)ε(x);

then α is the required lifting.

The theory of semisimplicial principal G–bundles is analogous to the theory of
principal bundles, developed by [Steenrod, 1951] for the topological case. In
particular we leave to the reader the task of defining the notion of isomorphism
of G–bundles, of trivial G–bundle, of G–bundle map, of induced G–bundle and
we go straight to the main point.

For each ss–set X let Princ(X) be the set of isomorphism classes of princi-
pal G–bundles on X and, for each ss–map f : X → Y , let f∗ : Princ(Y ) →
Princ(X) be the induced map: Princ is a contravariant functor with domain
the category SS. Our aim is to represent this functor.
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3.7 The construction of the universal bundle

Steenrod’s recognition criterion 3.5 (b) is carried unchanged to the semisim-
plicial case with a similar proof. Then it is a matter of constructing a principal
G–bundle γ : G→ EG→ BG, such that

(i) EG and BG are Kan ss–sets
(ii) EG is contractible.
H

We will follow the procedure used by [Heller 1955] and [Rourke–Sanderson 1971].
If X is an ss–set, let

XS :=
∞⋃
0

X(k).

In other words XS is the graded set consisting of all the simplexes of X , without
the face and degeneracy operators. We will denote with EG(X) the totality of
the maps of sets f with domain XS and range GS , which have degree zero, ie
f(X(k)) ⊂ G(k) .

Since G(k) is a group, then also EG(X) is a group.

Let G(X) be the subgroup consisting of those maps of sets which commute
with the semisimplicial operators, ie, those maps of sets which are restrictions
of ss–maps. For each k ≥ 0 we define

EG(k) := EG(∆k),

and we observe that G(∆k) is a group isomorphic to G(k) , the isomorphism
being the map which associates to each element of G(k) its characteristic map,
∆k → G , thought of as a graded function ∆k

S → GS (cf II 1.1).

Now it remains to define the semisimplicial operators in

EG =

∞⋃
0

EG(k).

Let λ: ∆l → ∆k be a morphism of ∆∗ and let λS : ∆l
S → ∆k

S be the corre-
sponding map of sets. For each θ ∈ EG(k) we define

λ#θ := θ ◦ λS : ∆l
S → GS

where λ# : EG(k) → EG(l) is a homomorphism of groups.
N

This concludes the definition of an ss–set EG, which even turns out to be a
group which has a copy of G as semisimplicial subgroup.
H

Furthermore, it follows from the definition above, that there is a natural iden-
tification:

EG(X) ≡ {ss–maps X → EG} (3.7.1)

The reader is reminded that EG(X) is the set of the degree–zero maps of sets
from XS to GS .

N
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Proposition EG is Kan and contractible.

H
Proof We claim that each ss–map ∂∆k → EG extends to ∆k . This follows
from (3.7.1) and from the fact that each map of sets of degree zero ∂∆k

S → GS
obviously admits an extension to ∆k

S . The result follows straight away from
this claim.

N

At this point we define
BG := EG/G,

the ss–set of the right cosets of G in EG, and set pγ : EG→ BG to be equal
to the natural projection.

In this way we have constructed a principal G–bundle γ/BG with E(γ) = EG.
It follows from Lemma 1.7 that BG is a Kan ss–set.

The following classification theorem for semisimplicial principal G-bundles has
been established.

Theorem BG is a classifying space for the group G, ie, the natural transfor-
mation

T : [X;BG]→ Princ(X),

defined by T [f ] := [f∗(γ)] is a natural equivalence of functors.

Corollary If H ⊂ G is a semisimplicial subgroup, then there exists, up to
homotopy, a fibration

G/H → BH → BG.

Proof Factorise the universal bundle of G through H and use the fact that,
by the Steenrod’s recognition principle,

EG/H ' BH.

Observation If H ⊂ G is a subgroup, then the quotient

H → G→ G/H

is a principal H –fibration and, by lemma 1.7, G/H is Kan.
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Classification of m–microbundles

3.8 So far we have established part (b) of 3.5 for principal G–bundles. Now
we assume that G = PLm and we will examine part (a). Let K be a locally
finite simplicial complex. Order the vertices of K . We consider the associated
ss–set K, which consists of all the monotone simplicial maps f : ∆q → K
(q = 0, 1, 2, . . .), with λ# : Kq → Kr given by λ#(f) = f ◦ λ with λ ∈ ∆∗ .

We will denote by Micro(K) the set of the isomorphism classes of m–microbun-
dles on K and by Princ(K) the set of the isomorphism classes of PL principal
m–bundles with base K.

Theorem There is a natural one to one correspondence

Micro(K) ≈ Princ(K).

H
Proof If ξ/K is an m–microbundle, the associated principal bundle Princ(ξ)
is defined as follows:

1) a q–simplex of the total space E of Princ(ξ) is a microisomorphism

h : ∆q × Rm → f∗(ξ)

with f ∈ Kq . The semisimplicial operators λ# : E(q) → E(r) are defined
by the formula

λ#(f,h) := (λ#(f), λ∗(h))

2) the projection p: E(q) → K is given by p(h) = f

3) the action E(q)×PL
(q)
m → E(q) is the composition of micro-isomorphisms.

Since PL
(q)
m acts freely on E(q) with orbit space K(q) , then the projection

p: E → K is, by definition, a PL principal m–bundle.

Conversely, given a PL principal m–bundle η/K , we can construct an m–
microbundle on K as follows: Let α : K → E(η) be any map which associates
with each ordered q–simplex θ in K a q–simplex α(θ) in E(η), such that

pηα(θ) = θ . Then there exists ϕ(i, θ) ∈ PL
(q−1)
m such that

∂iα(θ) = α(∂iθ)ϕ(i, θ).

Furthermore ϕ(i, θ) is uniquely determined. Let us now consider the disjoint
union of trivial bundles εmθ with θ in K. We glue together such bundles by
identifying each εm∂iθ with εmθ |∂iθ through the micro-isomorphism defined by
ϕ(i, θ) and by the ordering of the vertices of θ . The reader can verify that such
identifications are compatible when restricted to any face of θ . Therefore an
m–microbundle is defined η[Rm]/K . It is not difficult to convince oneself that
the two correspondences constructed

ξ −→ Princ(ξ) (associated principal bundle)

η −→ η[Rn] (change of fibre)
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are inverse of each others. This proves the theorem.
N

3.9 A certain amount of technical detail which is necessary for a rigorous
treatment of the classification of microbundles has been omitted, particularly
the part concerning the naturality of various constructions. However the main
points have been explained and we move on to state the final result. To do this
we need to define a microbundle with base an ss–set X . For what follows it
suffices for the reader to think of a microbundle with base X as a microbundle
with base |X|. Readers who are concerned about the technical details here may
read the following inset material.
H

It the topological case it is quite satisfactory to regard a microbundle ξ/X as
a microbundle ξ/|X|, however in the PL case it is not clear how to give |X|
the necessary PL structure so that a PL microbundle over |X| makes sense.
We avoid this problem by defining a PL microbundle ξ/X to comprise a collec-
tion of PL microbundles with bases the simplexes of X glued together by PL
microbundle maps corresponding to the face maps of X .

More precisely, for each σ ∈ X(k) we have a PL microbundle ξσ/∆
k and for each

pair σ ∈ X(k), τ ∈ X(l) and monotone map λ: ∆l → ∆k such that λ#(σ) = τ
an isomorphism

λ#
στ : ξτ ≈ λ∗ξσ

which is functorial ie, (λ ◦ µ)#
σρ = µ∗(λ#

στ ) ◦ µ#
τρ

where µ : ∆j → ∆l and µ#(τ) = ρ. Another way of putting this is that we have
a lifting of X (as a functor) to the category of PL microbundles and bundle

maps. More precisely associate a category X̃ with X by Ob(X̃) =
∑
nX

(n)

and Map(X̃)(τ, σ) = {(λ, τ, σ) : λ#σ = τ} for σ, τ ∈ Ob(X̃). Composition of

maps in X̃ is given by (λ, τ, σ) ◦ (µ, ρ, τ) = (λµ, ρ, τ). A PL microbundle ξ/X

is then a functor ξ from X̃ to the category of PL microbundles and bundle
maps such that for each σ ∈ X(n) , ξσ = ξ(σ) is a microbundle with base ∆n .

The definition implies that the microbundles ξσ can be glued to form a (topo-
logical) microbundle with base |X|.

N
Let BPLm be the classifying space of the group G = PLm constructed in 3.7.
Theorem 3.7 now implies that we have a PL microbundle γmPL/BPLm which we
call the classifying bundle and we have the following classification theorem.

Theorem BPLm is a classifying space for PL m–microbundles which have a
polyhedron as base. Precisely, there exists a PL m–microbundle γmPL/BPLm ,
such that the set of the isomorphism classes of PL m–microbundles on a
fixed polyhedron X is in a natural one to one correspondence with [X,BPLm]
through the induced bundle.
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3 The classifying spaces BPLm and BTopm 69

3.10 Milnor (1961) also proved that the homotopy type of BPLm contains a
locally finite simplicial complex.

His argument proceeds through the following steps:

(a) for each finite simplicial complex K the set Micro(K) is countable

(b) by taking K to be a triangulation of the sphere Sq deduce that each
homotopy group πq(BPLm) is countable

(c) the result then follows from [Whitehead 1949, p. 239].

The theorem of Whitehead, to which we referred, asserts that each countable
cw–complex is homotopically equivalent to a locally finite simplicial complex.
We still have to prove that each cw–complex whose homotopy groups are count-
able is homotopically equivalent to a countable cw–complex, for more detail
here, see subsection 3.13 below.

Note By virtue of 3.10 and of the Zeeman simplicial approximation theorem
it follows that

[X,BPLm]PL ≡ [X,BPLm]Top.

3.11 Let BTopm be the classifying space of G = Topm . Then we have, as
above:

Theorem BTopm classifies topological m–microbundles with base a polyhe-
dron.

Addendum BTopm even classifies the m–microbundles with base X , where
X is an ENR. In particular X could be a topological manifold.

Proof of the addendum Let γmTop/BTopm be a universal m–dimensional
microbundle, which certainly exists, and let N(X) be an open neighbourhood
of X in a Euclidean space having X as a retract. Let r : N(X) → X be the
retraction. Assume that ξ/X is a topological m–bundle and take r∗(ξ)/N(X).
By the classification theorem there exists a classifying function

(F, F ): r∗(ξ)→ γmTop.

Since r∗(ξ)|X = ξ , then (F, F )|ξ classifies ξ .

From now on we will write Gm to indicate, without distinction, either Topm
or PLm .
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3.12 There are also relative versions of the classifying theorems which assert
that, if C ⊂ X is closed and U is an open neighbourhood of C in X and if
fU : ξ|U → γmG is a classifying map, then there exists a classifying map f : ξ →
γmG , such that f = fU on a neighbourhood of C . In the case where C is
a subpolyhedron of X the relative version can be easily obtained using the
semisimplicial techniques described above.

3.13 Either for historical reasons or in order to have at our disposal explicit
models for BGm , which should make the exposition and the intuition eas-
ier in the rest of the text, we used Milnor’s heuristic semisimplicial approach.
However the existence of BGm can be deduced from Brown’s theorem [Brown
1962] on representable functors. This was observed for the first time by Arnold
Shapiro. The reader who is interested in this approach is referred to [Kirby–
Siebenmann 1977; IV section 8]. Siebenmann observes [ibidem, footnote p.
184] that Brown’s proof reduces the unproven statement at the end of 3.10 to
an easy exercise. This is true. Let T be a representable homotopy cofunc-
tor defined on the category of pointed cw–complexes. An easy inspection of
Brown’s argument ensures that, provided T (Sn) is countable for every n ≥ 0,
T admits a classifying cw–complex which is countable. Now let Y be a path
connected cw–complex whose homotopy groups are all countable, and consider
T (X) := [X,Y ]. Then the above observation tells us that T (X) admits a count-
able classifying Y ′ . But Y is homotopically equivalent to Y ′ by the homotopy
uniqueness of classifying spaces, which proves what we wanted.

3.14 BGm as a Grassmannian

We will start by constructing a particular model of EGm . Let R∞ denote the
union R1 ⊂ R2 ⊂ R3 ⊂ . . . .
An m–microbundle ξ/∆k is said to be a submicrobundle of ∆k×R∞ if E(ξ) ⊂
∆k × R∞ and the following diagram commutes:

E(ξ)
_�

��

p

##H
HH

HH
HH

HH

∆k

i
;;vvvvvvvvv

j
$$I

II
II

II
II

∆k

∆k × R∞
π1

::uuuuuuuuu

where i is the zero-section of ξ , p is the projection and j(x) = (x, 0). Having
said that, let WGm be the ss–set whose typical k–simplex is a monomorphism

f : ∆k × Rm → ∆k × R∞
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3 The classifying spaces BPLm and BTopm 71

ie, a Gm micro-isomorphism between ∆k×Rm and a submicrobundle of ∆k ×
R∞ . The semisimplicial operators are defined as usual, passing to the induced
micro-isomorphism.

Exercise WGm is contractible.

In order to complete the exercise we need to show that each ss–map ∆̇→WGm
extends to ∆ → WGm , where ∆ is any standard simplex. This means that
each monomorphism h : ∆̇×Rm → ∆̇×R∞ has to extend to a monomorphism
H : ∆× Rm → ∆× R∞ and this is not difficult to establish.

In the same way one can verify that WGm satisfies the Kan condition. WGm
is called the Gm–Stiefel manifold.

An action WGm×Gm →WGm defined by composing the micro–isomorphisms
transforms WGm into the space of a principal fibration

γ(Gm): Gm →WGm → BGm. (3.14.1)

By the Steenrod’s recognition criterion, BGm in (3.14.1) is a classifying space
for Gm and a typical k–simplex of BGm is nothing but a Gm–submicrobundle
of ∆k ×R∞ . In this way BGm is presented as a semisimplicial grassmannian.
Furthermore the tautological microbundle γmG /BGm is obtained by putting on
the simplex σ the microbundle which it represents which we will still denote
with σ . Therefore

γmG |σ := σ.

3.15 The ss–set Topm/PLm

In the case of the natural map of grassmannians

BPLm
pm−→BTopm

induced by the inclusion PLm ⊂Topm , it is very convenient to have a geomet-
ric description of its homotopic fibre. This is very easy to obtain using the
semisimplicial language. In fact there is an action also defined by composition,

WTopm × PLm →WTopm,

whose orbit space has the same homotopy type as BPLm and gives the required
fibration

B : Topm/PLm −→ BPLm
pm−→BTopm.

This takes us back to the general construction of Corollary 3.7.
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Obviously, Topm/PLm is the ss–set obtained by factoring with respect to the
natural action of PLm on Topm , so, by Observation 3.7, Topm/PLm satisfies
the Kan condition and

PLm ⊂ Topm → Topm/PLm

is a Kan fibration.
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4 PL structures on topological microbundles

In this section we will consider the problem of the reduction of a topological
microbundle to a PL microbundle and we will classify reductions in terms of lift-
ings on their classifying spaces. In this way we will put in place the foundations
of the obstruction theory which will allow the use apparatus of homotopy theory
for the problem of classifying the PL structures on a topological manifold.

4.1 A structure of PL microbundle on a topological m–microbundle ξ , with
base an ss–set X , is an equivalence class of topological micro–isomorphisms
f : ξ → η , where η/X is a PL microbundle. The equivalence relation is f ∼ f ′

if f ′ = h ◦ f , with h a PL micro–isomorphism.

A structure of PL microbundle will also be called a PLµ–structure (µ indicates
a microbundle). More generally, an ss–set, PLµ(ξ), is defined so that a typical
k–simplex is an equivalence class of micro–isomorphisms

f : ∆k × ξ → η

where η is a PL m–microbundle on ∆k ×X . The semisimplicial operators are
defined, as usual, passing to the induced micro–isomorphism.

Equivalently, a structure of PL microbundle on

ξ : X i−→E(ξ)
p−→X

is a polyhedral structure Θ, defined on an open neighbourhood U of i(X), such
that

X
i−→UΘ

p−→X

is a (locally trivial) PL m–microbundle. If Θ′ is another such polyhedral struc-
ture then we say that Θ is equal to Θ′ if the two structures define the same
germ in a neighbourhood of the zero–section, ie, if Θ = Θ′ in an open neigh-
bourhood of i(X) in E(ξ). Then Θ truely represents an equivalence class.
Using this language PLµ(ξ) is the ss–set whose typical k–simplex is the germ
around ∆k ×X of a PL structure on the product microbundle ∆k × ξ .

Going back to the fibration

B : Topm/PLm −→ BPLm
pm−→BTopm

constructed in 3.15 we fix, once and for all, a classifying map f : ξ → γmTop , which
restricts to a continuous map f : X → BTopm . Let us also fix a classifying map
pm : γmPL → γmTop , with restriction pm : BPLm → BTopm . A k–simplex of the
kss–set Lift(f) is a continuous map

σ : ∆k ×X → BPLm
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such that pm ◦ σ = f ◦ π2 , where π2 is the projection on X . Therefore a
0–simplex of Lift(f) is nothing but a lifting of f to BPLm , a 1–simplex is a
vertical homotopy class of such liftings, etc. As usual the liftings are nothing
but sections. In fact, passing to the induced fibration f∗(B) ( which we will
denote later either with ξf or ξ[Topm/PLm]) we have, giving the symbols the
obvious meanings,

Lift(f) ≈ Sect ξ[Topm/PLm] (4.1.1)

where the right hand side is the ss–set of sections of the fibration ξ[Topm/PLm]
associated with ξ .

Classification theorem for the PLµ–structures Using the notation in-
troduced above, there is a homotopy equivalence

α : PLµ(ξ)→ Lift(f)

which is well defined up to homotopy.

First we will give an indication of how α can be constructed directly, following
[Lashof 1971].

First proof Firstly we will observe that f : ξ → γmTop induces an isomorphism
h : ξ → f∗(γmTop).

η //

q

���
�
�
�
�
�
� γmPL

���
�
�
�
�
�
�

pm

$$J
JJ

JJ
JJ

JJ

ξ
f //

���
�
�
�
�
�
�

h ##F
F

F
F

F

g

;;wwwwwwwwwww
γmTop

���
�
�
�
�
�
�

f∗(γmTop)

{{w
w
w
w
w

BPLm
pm

$$J
JJ

JJ
JJ

JJ
J

X
f

//

f̂

55jjjjjjjjjjjjjjjjjjjj BTopm

Let f̂ : X → BPLm be a lifting of f and η = f̂∗(γPL). The map of m–
microbundles pm induces an isomorphism

q : η = f̂∗(γPL)→ f∗(γTop).

In fact, f∗(γTop) = (pmf̂)∗(γTop) = f̂∗p∗m(γTop) and there is a canonical iso-
morphism ϕ between γPL and p∗m(γTop). Therefore it will suffice to put

q := f̂∗(ϕ).
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Now we can define a PLµ–structure g on ξ by defining

g := q−1h.

In this way we have associated a 0–simplex of PLµ(ξ) with a 0–simplex of
Lift(f) .

On the other hand, if f̂t is a 1-simplex of Lift(f), ie, a vertical homotopy class
of liftings of f , then the set of induced bundles f̂∗t (γTop) determines, in the
way we described above, a 1–simplex gt of PLµ–structures on ξ .

Conversely, fix a PLµ–structure g : ξ → η , and let a : η → γPL be a classifying
map which covers a : X → BPLm .

η a // γPL

���
�
�
�
�
�
�

pm

%%KK
KK

KK
KK

KK

ξ
f //

���
�
�
�
�
�
�

g

OO

γTop

���
�
�
�
�
�
�

BPLm
pm

%%K
KK

KK
KK

KK

X
pma //

f

11

a

<<xxxxxxxxx

f̂ 88

BTopm

The maps X → BTopm given by pma and f are homotopic, since they classify
topologically isomorphic microbundles. Therefore, since pm is a fibration and
pma lifts to a trivially, then f also lifts to a f̂ : X → BPLm . This way is
established a correspondence between a 0–simplex of PLµ(ξ) and a 0–simplex
of Lift(f).

4.2 It would be possible to conclude the proof of the theorem in this heuristic
way, however we would rather use a less direct argument, which is more elegant
and, in some sense, more instructive and illuminating. This argument is due to
[Kirby–Siebenmann 1977, pp. 236–239].

H
Preface If A and B are metrisable topological spaces, then the typical k–
simplex of the ss of the functions BA is a continuous map

∆k × A→ B.

The semisimplicial operators are defined by composition of functions. Naturally
the path components of BA are nothing but the homotopy classes [A,B]. An
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ss–map g of a simplicial complex Y in BA is a continuous map G : Y ×A→ B ,
defined by

G(y, a) = g(y)(a)

for y ∈ Y ; furthermore g is homotopic to a constant if and only if G is homo-
topic to a map of the same type as

Y ×A π2−→A −→ B.

Incidentally we notice that if A has a countable system of neighbourhoods and
if we give BA the compact open topology, then g is continuous if and only if
G is continuous.

Second proof of theorem 4.1 Let MTop(X) be the ss–set whose typical
k–simplex is a topological m–microbundle ξ with base ∆k × X . In order to
avoid set–theoretical problems we can think of ξ as being represented by a
submicrobundle of ∆k × X × R∞ . We agree that another such microbundle
ξ′/∆k × X represents the same simplex of MTop(X) if ξ coincides with ξ′

in a neighbourhood of the zero–section. In practice (cf 3.14) MTop(X) can
be considered as the grassmannian of the m–microbundles on X . Now, if
Y is a simplicial complex, then an ss–map Y → MTop(X) is represented by
an m–microbundle γ on Y × X and it is homotopic to a constant if there
exists an m–microbundle γI on I × Y ×X , such that γI |0 × Y ×X = γ and
γI |1× Y ×X = Y × γ1 , where γ1 is some microbundle on X .

Further, let M+
Top(X) be the ss–set whose typical k–simplex is an equivalence

class of pairs (ξ, f), where ξ is an m–microbundle on ∆k ×X and f : ξ → γmTop

is a classifying micro–isomorphism and, also, (ξ, f) ∼ (ξ′, f ′) if the pairs are
identical in a neighbourhood of the two respective zero–sections. In this case
an ss–map g : Y →M+

Top(X) is represented by an m–microbundle η on Y ×X ,
together with a classifying map fη : η → γmTop. Furthermore g is homotopic to a
constant if there exist an m–microbundle ηI on I×Y ×X and a classifying map
F : ηI → γmTop , such that (ηI ,F)|0×Y ×X = (η, fη) and (ηI ,F)|1×Y ×X is of
type (Y × η1, f1π2), where π2 is the projection on η1/X and f1 is a classifying
map for η1 . Consider the two forgetful maps

MTop(X)
ρTop←−M+

Top(X)
σTop−→BTopXm,

ρTop(ξ, f) = ξ , and σTop(ξ, f) = f. We leave to the reader the proof that
ρ, σ are homotopy equivalences, since they induce a bijection between the path
components, as well as an isomorphism between the homotopy groups of the
corresponding components. For ρ this is a consequence of the classification
theorem for topological m–microbundles, in its relative version. In order to
find a homotopy inverse for σ , we instead use the construction of the induced
bundle and of the homotopy theorem for microbundles. In the PL case we have
analogous ss–sets and homotopy equivalences, which are defined in the same
way as the corresponding topological objects:

MPL(X)
ρPL←−M+

PL(X)
σPL−→BPLXm,
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where k–simplex of MPL(X) is now a topological m–microbundle ξ on ∆k×X ,
together with a PL structure Θ, and (ξ,Θ) ∼ (ξ′,Θ′) if such pairs coincide in a
neighbourhood of the zero section.

We observe that the proof of the fact that σPL is a homotopy equivalence
requires the use of Zeeman’s simplicial approximation theorem.

In this way we obtain a commutative diagram of forgetful ss–maps

MPL(X)

p′

��

M+
PL(X)

ρPLoo

p

��

σPL // BPLXm

p′′

��
MTop(X) M+

Top(X)
ρTop

oo
σTop

// BTopXm

where p′′ is induced by the projection pm : BPLm → BTopm of the fibration B .
It is easy to verify that both p′ and p′′ are Kan fibrations. Furthermore we can
assume that p also is a fibration. In fact, if it is not, the Serre’s trick makes p a
fibration, transforming the diagram above into a new diagram which is commu-
tative up to homotopy and where the horizontal morphisms are still homotopy
equivalences, while the lateral vertical morphisms p′, p′′ remain unchanged. At
this point the Proposition 1.7 ensures that, if (ξ, f) ∈ M+

Top(X), then the fi-

bre p′
−1

(ξ) is homotopically equivalent to the fibre (p′′)−1(f). However, by
definition:

(p′)−1(ξ) = PLµ(ξ)

(p′′)−1(f) = Lift(f).

The theorem is proved.
N
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Part III : The differential

1 Submersions

In this section we will introduce topological and PL submersions and we will
prove that each closed submersion with compact fibres is a locally trivial fibra-
tion.

We will use Γ to stand for either Top or PL and we will suppose that we are
in the category of Γ–manifolds without boundary.

1.1 A Γ–map p : Ek → Xl between Γ–manifolds is a Γ–submersion if p
is locally the projection Rk πl−→Rl on the first l–coordinates. More precisely,
p : E → X is a Γ–submersion if there exists a commutative diagram

E
p

// X

Uy
∩
Rk

φy

OO

πl //

Ux
∩
Rl

φx

OO

where x = p(y), Uy and Ux are open sets in Rk and Rl respectively and ϕy ,
ϕx are charts around x and y respectively.

It follows from the definition that, for each x ∈ X , the fibre p−1(x) is a Γ–
manifold.

1.2 The link between the notion of submersions and that of bundles is very
straightforward. A Γ–map p : E → X is a trivial Γ–bundle if there exists a Γ–
manifold Y and a Γ–isomorphism f : Y ×X → E , such that pf = π2 , where
π2 is the projection on X .

More generally, p : E → X is a locally trivial Γ–bundle if each point x ∈ X has
an open neighbourhood restricted to which p is a trivial Γ–bundle.

Even more generally, p : E → X is a Γ–submersion if each point y of E has
an open neighbourhood A, such that p(A) is open in X and the restriction
A→ p(A) is a trivial Γ–bundle.
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1 Submersions 79

Note A submersion is not, in general, a bundle. For example consider E =
R2 − {0}, X = R and p projection on the first coordinate.

1.3 We will now introduce the notion of a product chart for a submersion.
If p : E → X is a Γ–submersion, then for each point y in E , there exist a
Γ–manifold U , and an open neighbourhood S of x = p(y) in X and a Γ–
embedding

ϕ: U × S → E

such that Imϕ is a neighbourhood of y in E and, also, p ◦ ϕ is the projection
U × S → S ⊂ E . Therefore, as we have already observed, p−1(x) is a Γ–
manifold. Let us now assume that ϕ satisfies further properties:

(a) U ⊂ p−1(x)

(b) ϕ(u, x) = u for each u ∈ U .

Then we can use interchangeably the following terminology:

(i) the embedding ϕ is normalised

(ii) ϕ is a product chart around U for the submersion p

(iii) ϕ is a tubular neighbourhood of U in E with fibre S with respect to the
submersion p.

The second is the most suitable and most commonly used.

With this terminology, p : E → X is a Γ–bundle if, for each x ∈ X , there
exists a product chart ϕ: p−1(x)× S → E around the fibre p−1(x), such that
the image of ϕ coincides with p−1(S).

1.4 The fact that many submersions are fibrations is a consequence of the
fundamental isotopy extension theorem, which we will state here in the version
that is more suited to the problem that we are tackling.

Let V be an open set in the Γ–manifold X , Q another Γ–manifold which acts
as the parameter space and let us consider an isoptopy of Γ–embeddings

G: V ×Q→ X ×Q.

Given a compact subset C of V and a point q in Q, we are faced with the
problem of establishing if and when there exists a neighbourhood S of q in
Q and an ambient isotopy G′ : X × S → X × S , which extends G on C , ie
G′ | C × S = G | C × S .
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Isotopy extension theorem Let C ⊂ V ⊂ X and G: V ×Q → X ×Q be
defined as above. Then there exists a compact neighbourhood C+ of C in V
and an extension G′ of G on C , such that the restriction of G′ to (X−C+)×S
is the identity.

This remarkable result for the case Γ = Top is due to [Černavskii 1968], [Lees
1969], [Edwards and Kirby 1971], [Siebenmann 1972].

For the case Γ = PL instead we have to thank [Hudson and Zeeman 1964] and
[Hudson 1966]. A useful bibliographical reference is [Hudson 1969].

Note In general, there is no way to obtain an extension of G to the whole
open set V . Consider, for instance, V =

◦
Dm , X = Rm , Q = R and

G(v, t) =
(

v

1− t‖v‖ , t
)

for t ∈ Q and v ∈
◦
Dm and t ∈ [0, 1], and G(v, t) stationary outside [0, 1]. For

t = 1, we have
G1(

◦
Dm) = Rm.

Therefore G1 does not extend to any homeomorphism G′1 : Rm → Rm , and
therefore G does not admit any extension on V .

1.5 Let us now go back to submersions. We have to establish two lemmas, of
which the first is a direct consequence of the isotopy extension theorem.

Lemma Let p : Y ×X → X be the product Γ–bundle and let x ∈ X . Further
let U ⊂ Yx = p−1(x) be a bounded open set and C ⊂ U a compact set. Finally,
let

ϕ: U × S → Yx ×X

be a product chart for p around U . Then there exists a product chart

ϕ1 : Yx × S1 → Yx ×X
for the submersion p around the whole of Yx , such that

(a) ϕ = ϕ1 on C × S1

(b) ϕ1 = the identity outside C+ × S1 , where, as usual, C+ is a compact
neighbourhood of C in U .

Proof Apply the isotopy extension theorem with X , or better still S , as the
space of the parameters and Yx as ambient manifold.
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C

X

S1

Yx

x

p

Glueing Lemma Let p : E → X be a submersion, x ∈ X , with C and D
compact in p−1(x). Let U , V be open neighbourhoods of C , D in p−1(x); let
ϕ: U × S → E and ψ : V × S → E be products charts. Then there exists a
product chart ω : M × T → E , where M is an open neighbourhood of C ∪D
in p−1(x). Furthermore, we can chose ω such that ω = ϕ on C×T and ω = ψ
on (D − U)× T .

H
Proof Let C+ ⊂ U and D+ ⊂ V be compact neighbourhoods of C,D in
p−1(x).

φ ψ

U
V

C
D

Applying the lemma above to V ×X → X we deduce that there exists a product
chart for p around V

ψ1 : V × S1 → E

such that

(a) ψ1 = ψ on (V − U)× S1

(b) ψ1 = ϕ on (C+ ∩D+)× S1

Let M1 =
◦
C+ ∪

◦
D+ and T1 = S ∩ S1 and define

ω : M1 × T1 → E

by putting

ω |
◦
C+ × T1 = ϕ |

◦
C+ × T1 and ω |

◦
D+ × T1 = ψ1 |

◦
D+ × T1
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Essentially, this is the required product chart. Since ω is obtained by glueing
two product charts, it suffices to ensure that ω is injective. It may not be injec-
tive but it is locally injective by definition and furthermore, ω|M1 is injective,
being equal to the inclusion M1 ⊂ p−1(x). Now we restrict ω firstly to the
interior of a compact neighbourhood of C ∪D in M1 , let us say M . Once this
has been done it will suffice to show that there exists a neighbourhood T of x
in X , contained in T1 , such that ω |M ×T1 is injective. The existence of such
a T1 follows from a standard argument, see below. This completes the proof.

The standard argument which we just used is the same as the familiar one which
establishes that, if N ⊂ A are differential manifolds, with N compact and E(ε)
is a small ε–neighbourhood of the zero–section of the normal vector bundle of
N in A, then a diffeomorphism between E(ε) and a tubular neighbourhood of
N in A is given by the exponential function, which is locally injective on E(ε).

N

Theorem (Siebenmann) Let p : E → X be a closed Γ–submersion, with
compact fibres. Then p is a locally trivial Γ–bundle.

Proof The glueing lemma, together with a finite induction, ensures that, if
x ∈ X , then there exists a product chart

ϕ: p−1(x)× S → E

around p−1(x). The set N = p(E − Imϕ) is closed in X , since p is a closed
map. Furthermore N does not contain x. If S1 = S − (X − N), then the
restricted chart p−1(x) × S1 → E has image equal to p−1(S1). In fact, when
p(y) ∈ S1 , we have that p(y) /∈ N and therefore y ∈ Imϕ. This ends the proof
of the theorem.

We recall that a continuous map between metric spaces and with compact fibres,
is closed if and only if it is proper, ie, if the preimage of each compact set is
compact.

1.6 Submersions p : E → X between manifolds with boundary

Submersions between manifolds with boundary are defined in the same way
and the theory is developed in an analogous way to that for manifolds without
boundary. The following changes apply:

(a) for i = k, l in 1.1, we substitute Ri+ ≡ {x1 ≥ 0}for Ri

(b) in 1.4 the isotopy Gt : V → X must be proper, ie, formed by embeddings
onto open subsets of X (briefly, Gt must be an isotopy of open embeddings).

Addendum to the isotopy extension lemma 1.4 If Q = In , then we can
take S to be the whole of Q.
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Note Even in the classical case Q = [0, 1] the extension of the isotopy cannot,
in general, be on the whole of V . For example the isotopy G(v, t):

◦
Dm × I →

Rm × I of note 1.4, ie,

G(v, t) =
(

v

1− t‖v‖ , t
)
,

with t ∈ [0, 1], connects the inclusion
◦
Dm ⊂ Rm(t = 0) with G1 , which cannot

be extended. A fortiori, G cannot be extended.

Rm

◦
Dm

0

1

1.7 Differentiable submersions

These are much more familiar objects than the topological ones. Changing the
notation slightly, a differentiable map f : X → Y between manifolds without
boundary is a submersion if it verifies the conditions in 1.1 and 1.2, taking now
Γ = Diff . However the following alternative definition is often used: f is a
submersion if its differential is surjective for each point in X .

Theorem A proper submersion, with compact fibres, is a differentiable bun-
dle.

Proof For each y ∈ Y , a sufficiently small tubular neighbourhood of p−1(y)
is the required product chart.

1.8 As we saw in 1.2 there are simple examples of submersions with non-
compact fibres which are not fibrations.

We now wish to discuss a case which is remarkable for its content and difficulty.
This is a case where a submersion with non-compact fibres is a submersion.
This result has a central role in the theorem of classification of PL structures
on a topological manifold.
Let ∆ be a simplex or a cube and let Mm be a topological manifold without
boundary which is not necessarily compact and let also Θ be a PL structure
on ∆×M such that the projection

p : (∆×M)Θ → ∆
is a PL submersion.
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Fibration theorem (Kirby–Siebenmann 1969) If m 6= 4, then p is a PL
bundle (necessarily trivial).

Before starting to explain the theorem’s intricate line of the proof we observe
that in some sense it might appear obvious. It is therefore symbolic for the
hidden dangers and the possibilities of making a blunder found in the study
of the interaction between the combinatorial and the topological aspects of
manifolds. Better than any of my efforts to represent, with inept arguments,
the uneasiness caused by certain idiosyncrasies is an outburst of L Siebenmann,
which is contained in a small note of [Kirby–Siebenmann 1977, p. 217], which
is referring exactly to the fibration theorem:

“This modest result may be our largest contribution to the final classi-
fication theorem; we worked it out in 1969 in the face of a widespread
belief that it was irrelevant and/or obvious and/or provable for all
dimensions (cf [Mor3 ], [Ro2 ] and the 1969 version of [Mor4 ]). Such
a belief was not so unreasonable since 0.1 is obvious in case M is
compact: every proper cat submersion is a locally trivial bundle”.
(L Siebenmann)

H
Proof We will assume ∆ = I . The general case is then analogous with some
more technical detail. We identify M with 0×M and observe that, since p is
a submersion, then Θ restricts to a PL structure on M = p−1(0). This enables
us to assume that M is a PL manifold. We filter M by means of an ascending
chain

M0 ⊂M1 ⊂M2 ⊂ · · · ⊂Mi ⊂ · · ·
of PL compact m–submanifolds, such that each Mi is in a regular neighbour-

hood of some polyhedron contained in M and, furthermore, Mi ⊂
◦
M i+1 and

M = ∪iMi . Such a chain certainly exists. Furthermore, since Mi is a regular
neighbourhood, its frontier Ṁi is PL bicollared in M and we can take open
disjoint PL bicollars Vi ≈ Ṁi × R, such that Vi ∩Mi = Mi × (−∞, 0]. Let us
fix an index i and, for the sake simplicity, we will write N instead of Mi . We
will work in E = (I × Ṅ × R)Θ , equipped with Cartesian projections.

The reader can observe that, even if I × Ṅ is a PL manifold with the PL
manifold structure coming from M , it is not, a priori, a PL submanifold of E.
It is exactly this situation that creates some difficulties which will force us to
avoid the dimension m = 4.

E
p

//

π

��

I

R
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I ×N

I × Ṅ × R

0

1

p

N

1.8.1 First step

We start by recalling the engulfing theorem proved in I.4.11:

Theorem Let Ww be a closed topological manifold with w 6= 3, let Θ be
a PL structure on W × R and C ⊂ W × R a compact subset. Then there
exists a PL isotopy G of (W × R)Θ having compact support and such that
G1(C) ⊂W × (−∞, 0].

The theorem tells us that the tide, which rises in a PL way, swamps every
compact subset of (W × R)Θ , even if W is not a PL manifold.

Corollary (Engulfing from below) For each λ ∈ I and for each pair of inte-
gers a < b, there exists a PL isotopy with compact support

Gt : (λ× Ṅ × R)Θ → (λ× Ṅ × R)Θ

such that
G1(λ× Ṅ × (−∞, a)) ⊃ λ× Ṅ × (−∞, b]

provided that m 6= 4 .

The proof is immediate.

1.8.2 Second step (Local version of engulfing from below)

By theorem 1.5 each compact subset of the fibre of a submersion is contained
in a product chart. Therefore, for each integer r and each point λ of I , there
exists a product chart

ϕ : λ× Ṅ × (−r, r)× Iλ → E

for the submersion p, where Iλ indicates a suitable open neighbourhood of λ
in I . If a ≤ b are any two integers, then Corollary 1.8.1 ensures that r can be
chosen such that[a, b] ⊂ (−r, r) and also that there exists a PL isotopy,

Gt : λ× Ṅ × (−r, r)→ λ× Ṅ × (−r, r),
which engulfs level b inside level a and also has a compact support. Now
let f : I → I be a PL map, whose support is contained in Iλ and is 1 on a
neighbourhood of λ. We define a PL isotopy

Ht : E → E
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in the following way:

(a) Ht|Imϕ is determined by the formula

Ht(ϕ(x,µ)) = ϕ(Gf(µ)t(x), µ)

where x ∈ λ× Ṅ × (−r, r) and µ ∈ Iλ .

(b) Ht is the identity outside Imϕ .

It results that Ht is an isotopy of all of E which commutes with the projection
p, ie, Ht is a spike isotopy.

0

1

Iλ
A possibilty for f : I → I

The effect of Ht is that of including level b inside level a , at least as far as
small a neighbourhood of λ.

1.8.3 Third step (A global spike version of the Engulfing form below)

For each pair of integers a < b, there exists a PL isotopy

Ht : E → E,

which commutes with the projection p, has compact support and engulfs the
level b inside the level a , ie,

H1(I × Ṅ × (−∞, a)) ⊃ I × Ṅ × (−∞, b].
The proof of this claim is an instructive exercise and is therefore left to the
reader. Note that I will have to be divided into a finite number of sufficiently
small intervals, and that the isotopies of local spike engulfing provided by the
step 1.8.2 above will have to be wisely composed.

1.8.4 Fourth step (The action of Z)

For each pair of integers a < b , there exists an open set E(a, b) of E , which
contains π−1[a, b] and is such that

p: E(a, b)→ I

is a PL bundle.
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Proof Let H1 : E → E be the PL homeomorphism constructed in 1.8.3. Let
us consider the compact set

C(a, b) = H1(π−1(−∞, a]) \ π−1(−∞, a)

and the open set

E(a, b) =
⋃
n∈Z

Hn
1 (C(a, b)).

There is a PL action of Z on E(a, b), given by

q :Z× E(a, b)→ E(a, b)

(1, x) 7→ H1(x)

This action commutes with p.

If B = E(a, b)/Z is the space of the orbits then we have a commutative diagram

E(a, b)
q

//

p

""E
EE

EE
EE

EE
B

p′
����
��
��
��

I

Since H1 is PL, then B inherits a PL structure which makes q into a PL
covering; therefore since p is a PL submersion, then p′ also is a submersion.
Furthermore each fibre of p′ is compact, since it is the quotient of a compact
set, and p′ is closed. So p′ is a PL bundle, and from that it follows that p also
is such a bundle (some details have been omitted).

1.8.5 Fifth step (Construction of product charts around the manifolds Mi )

Until now we have worked with a given manifold Mi ⊂M and denoted it with
N . Now we want to vary the index i . Step 1.8.4 ensures the existence of an
open subset

E′i ⊂ Ei = (I × Ṁi × R)Θ

which contains I × Ṁi × 0 such that it is a locally trivial PL bundle on I . We
chose PL trivialisations

hi : I×Y ′i
≈ //

##G
GG

GG
GG

GG
E′i ⊂ I×Vi

zzuu
uu
uu
uu
uu

I

and we write M ′i for Y ′i ∩Mi = Y ′i ∩ (Ṁi × (−∞, 0]).

We define a PL submanifold Xi of (I ×M)Θ , by putting

Xi = {(I ×Mi − E′i) ∪ hi(I ×M ′i)}Θ

and observe that Xi ⊂
◦
Xi+1 and

⋃
iXi = (I ×M)Θ .
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The projection pi : Xi → I is a PL submersion and we can say that the whole
proof of the theorem developed until now has only one aim: ensure for i the
existence of a PL submersion of type pi .

Now, since Xi is compact, the projection pi is a locally trivial PL bundle and
therefore we have trivialisations

I×Mi

gi //

""E
EE

EE
EE

EE
Xi

pi
��~~
~~
~~
~~

I

1.8.6 Sixth step (Compatibility of the trivialisations)

In general we cannot expect that gi coincides with gi+1 on I×Mi . However it
is possible to alter gi+1 in order to obtain a new chart g′i+1 which is compatible
with gi . To this end let us consider the following commutative diagram

I ×Mi+1 ⊃

Γi
&&MM

MM
MM

MM
MM

I ×Mi ≈
gi //

γi

��

Xi ⊂ (I ×M)Θ⋂
I ×Mi+1

gi+1 // Xi+1 ⊂ (I ×M)Θ

where all the maps are intended to be PL and they also commute with the
projection on I. The map γi is defined by commutativity and Γi exists by the
isotopy extension theorem of Hudson and Zeeman. It follows that

g′i+1 := gi+1Γi

is the required compatible chart.

1.8.7 Conclusion

In light of 1.8.6. and of an infinite inductive procedure we can assume that the
trivialisations {gi} are compatible with each other. Then

g :=
⋃
i

gi

is a PL isomorphism I ×MΘ ≈ (I ×M)Θ , which proves the theorem.

N

Note I advise the interested reader who wishes to study submersions in more
depth, including also the case of submersions of stratified topological spaces, as
well as other difficult topics related to the spaces of homomorphisms, to consult
[Siebenmann, 1972].

To the reader who wishes to study in more depth the theorem of fibrations for
submersions with non compact fibres, including extension theorems of sliced
concordances, I suggest [Kirby–Siebemann 1977 Essay II].
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2 PL structures on a topological manifold 89

2 The space of the PL structures on a topological
manifold M

Let Mm be a topological manifold without boundary, which is not necessarily
compact.

2.1 The complex PL(M)

The space PL(M) of PL structures on M is the ss–set which has as typical
k–simplex σ a PL structure Θ on ∆k ×M , such that the projection

(∆k ×M)Θ
π1−→∆k

is a PL submersion. The semisimplicial operators are defined using fibred prod-
ucts. More precisely, if λ : ∆l → ∆k is in ∆∗ , then λ#(σ) is the PL structure
on ∆l ×M , which is obtained by pulling back π1 by λ:

λ#(σ)


(∆l ×M)λ∗Θ −→ (∆k ×M)Θ

π1 ↓ ↓ π1

∆l λ−→ ∆k

An equivalent definition is that a k–simplex of PL(M) is an equivalence class
of commutative diagrams

∆k×M
f

//

π1
##G

GG
GG

GG
GG

Q

p
~~~~
~~
~~
~~

∆k

where Q is a PL manifold, p a PL submersion, f a topological homeomorphism
and the two diagrams are equivalent if f ′ = ϕ ◦ f , where ϕ: Q → Q′ is a PL
isomorphism.

Under this definition a k–simplex of PL(M) is a sliced concordance of PL
structures on M .
H

In order to show the equivalence of these two definitions, let temporarily PL′(M)
(respectively PL′′(M)) be the ss–set obtained by using the first (respectively
the second) definition. We will show that there is a canonical semisimplicial
isomorphism α : PL′(M)→ PL′′(M). Define α(∆×M)Θ to be the equivalence
class of Id : ∆ × M → (∆ × M)Θ where ∆ = ∆k . Now let β : PL′′(M) →
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PL′(M) be constructed as follows. Given f : ∆ × M → QPL , let Θ be a
maximal PL atlas on QPL . Then set β(f) := (∆ ×M)f∗(Θ) . The map β is
well defined since, if f ′ is equivalent to f in PL′′(M), then

(∆×M)f ′∗Θ′ = (∆×M)(φ◦f)∗Θ′ = (∆×M)f∗φ∗Θ′ = (∆×M)f∗Θ.

The last equality follows from the fact that φ is PL, henceφ∗Θ′ = Θ. Now
let us prove that each of α and β is the inverse of the other. It is clear that
β ◦ α = IdPL′(M) . Moreover

α ◦ β(∆×M f→ Q) = α(∆×M)f∗Θ = (∆×M Id→ (∆×M)f∗Θ).

But f ◦ Id = f : (∆×M)f∗Θ → Q is PL by construction, therefore α ◦ β is the
identity.

Since the submersion condition plays no relevant role in the proof, we have
established that PL′(M) and PL′′(M) are canonically isomorphic.

N

Observations (a) If M is compact, we know that the submersion π1 is a
trivial PL bundle. In this case a k–simplex is a k–isotopy of structures on M .
See also the next observation.

(b) (Exercise) If M is compact then the set π0(PL(M)) of path components
of PL(M) has a precise geometrical meaning: two PL structures Θ,Θ′ on M
are in the same path component if and only if there exists a topological isotopy
ht : M → M , with h0 = 1M and h1 : MΘ → MΘ′ a PL isomorphism. This
is also true if M is non-compact and the dimension is not 4 (hint: use the
fibration theorem).

(c) PL(M) 6= ∅ if and only if M admits a PL structure.

(d) If PL(M) is contractible then M admits a PL structure and such a struc-
ture is strongly unique. This means that two structures Θ, Θ′ on M are isotopic
(or concordant). Furthermore any two isotopies (concordances) between Θ and
Θ′ can be connected through an isotopy (concordance respectively) with two
parameters, and so on.

(e) If m ≤ 3, Kerékjárto (1923) and Moise (1952, 1954) have proved that
PL(M) is contractible. See [Moise 1977].

2.2 The ss–set PL(TM)

Now we wish to define the space of PL structures on the tangent microbundle
on M . In this case it will be easier to take as TM the microbundle

M
∆−→M ×M π2−→M ,

Geometry & Topology Monographs, Volume 6 (2003)



2 PL structures on a topological manifold 91

where π2 is the projection on the second factor. Hirsch calls this the second
tangent bundle. This is obviously a notational convention since if we swap the
factors we obtain a canonical isomorphism between the first and the second
tangent bundle.

More generally, let, ξ : X i−→E(ξ)
p−→X be a topological m–microbundle on a

topological manifold X . A PL structure Θ on ξ is a PL manifold structure
on an open neighbourhood U of i(X) in E(ξ), such that p : UΘ → X is a PL
submersion.

If Θ′ is another PL structure on ξ , we say that Θ is equal to Θ′ if Θ and
Θ′ define the same germ around the zero-section, ie, if Θ = Θ′ in some open
neighbourhood of i(X) in E(ξ). Then Θ really represents an equivalence class.

Note A PL structure Θ on ξ is different from a PL microbundle structure on
ξ , namely a PLµ–structure, as it was defined in II.4.1. The former does not
require that the zero–section i : X → UΘ is a PL map. Consequently i(X) does
not have to be a PL submanifold of UΘ , even if it is, obviously, a topological
submanifold.

The space of the PL structures on ξ , namely PL(ξ), is the ss–set, whose typical
k–simplex is the germ around ∆k×X of a PL structure on the product micro-
bundle ∆k×ξ . The semisimplicial operators are defined using the construction
of the induced bundle.

Later we shall see that as far as the classification theorem is concerned the
concepts of PL structures and PLµ–structures on a topological microbundle
are effectively the same, namely we shall prove (fairly easily) that the ss–sets
PL(ξ) and PLµ(ξ) have the same homotopy type (proposition 4.8). However
the former space adapts naturally to the case of smoothings (Part V) when
there is no fixed PL structure on M .

Lemma PL(M) and PL(TM) are kss–sets.

Proof This follows by pulling back over the PL retraction ∆k → Λk .

Geometry & Topology Monographs, Volume 6 (2003)



92 III : The differential

3 Relation between PL(M) and PL(TM)

From now on, unless otherwise stated, we will introduce a hypothesis, which is
only apparently arbitrary, on our initial topological manifold M .

(*) We will assume that there is a PL structure fixed on M.

The arbitrariness of this assumption is in the fact that it is our intention to
tackle jointly the two problems of existence and of the classification of the PL
structures on M . However this preliminary hypothesis simplifies the exposition
and makes the technique more clear, without invalidating the problem of the
classification. Later we will explain how to avoid using (*), see section 5.

3.1 The differential

Firstly we define an ss–map

d : PL(M)→ PL(TM),

namely the differential, by setting, for Θ ∈ PL(M)(k) , dΘ to be equal to the
PL structure Θ×M on E(∆k × TM) = ∆k ×M ×M .

Our aim is to prove that the differential is a homotopy equivalence, except in
dimension m = 4.

Classification theorem d : PL(M) → PL(TM) is a homotopy equivalence
for m 6= 4.

The philosophy behind this result is that infinitesimal information contained
in TM can be integrated in order to solve the classification problem on M . In
other words d is used to linearise the classification problem.

The theorem also holds for m = 4 if none of the components of M are compact.
However the proof uses results of [Gromov 1968] which are beyond the scope of
this book.

We now set the stage for the proof of theorem 3.1.

3.2 The Mayer–Vietoris property

Let U be an open set of M. Consider the PL structure induced on U by the
one fixed on M. The correspondences U → PL(U) and U → PL(TU) define
contravariant functors from the category of the inclusions between open sets of
M , with values in the category of ss–sets. Note that TU = TM |U .

Notation We write F (U) to denote either PL(U) or PL(TU) without dis-
tinction.
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Lemma (Mayer–Vietoris property) The functor F transforms unions into
pullbacks, ie, the following diagram

F (U ∪ V ) //

��

F (U)

��
F (V ) // F (U ∩ V )

is a pull back for each pair of open sets U, V ⊂M .

The proof is an easy exercise.

3.3 Germs of structures

Let A be any subset of M. The functor F can then be extended to A using
the germs. More precisely, we set

PL(A ⊂M) := lim
→
{PL(U) : A ⊂ U open in M}

PL(TM |A) := lim
→
{PL(TU) : A ⊂ U open in M} .

The differential can also be extended to an ss–map

dA : PL(A ⊂M)→ PL(TM |A)

which is still defined using the rule Θ→ Θ× U .

Finally, the Mayer–Vietoris property 3.2 is still valid if, instead of open sets
we consider closed subsets. This implies that, when we write F (A) for either
PL(A ⊂M) or PL(TM |A), then the diagram of restrictions

F (A ∪B) //

��

F (A)

��
F (B) // F (A ∩B)

(3.3.1)

is a pullback for closed A,B ⊂M .

3.4 Note about base points

If Θ ∈ PL(M)(0) , ie, Θ is a PL structure on M , there is a canonical base point
∗ for the ss–set PL(M), such that

∗k = ∆k ×Θ.

In this way we can point each path component of PL(M) and correspondingly
of PL(TM). Furthermore we can assume that d is a pointed map on each path
component. The same thing applies more generally for PL(A ⊂ M) and its
related differential. In other words we can always assume that the diagram
3.3.1 is made up of ss–maps which are pointed on each path component.
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4 Proof of the classification theorem

The method of the proof is based on immersion theory as viewed by Haefliger
and Poenaru (1964) et al. Among the specialists, this method of proof has been
named the Haefliger and Poenaru machine or the immersion theory machine.
Various authors have worked on this topic. Among these we cite [Gromov 1968],
[Kirby and Siebenmann 1969], [Lashof 1970] and [Rourke 1972].

There are several versions of the immersion machine tailored to the particular
theorem to be proved. All versions have a common theme. We wish to prove
that a certain (differential) map d connecting functors defined on manifolds, or
more generally on germs, is a homotopy equivalence. We prove:

(1) The functors satisfy a Mayer–Vietoris property (see for example 3.2 above).

(2) The differential is a homotopy equivalence when the manifold is Rn .

(3) Restrictions to certain subsets are Kan fibrations.

Once these are established there is a transparent and automatic procedure which
leads to the conclusion that d is a homotopy equivalence. This procedure could
even be decribed with axioms in terms of categories. We shall not axiomatise
the machine. Rather we shall illustrate it by example.

The versions differ according to the precise conditions and subsets used. In
this section we apply the machine to prove theorem 3.1. We are working in the
topological category and we shall establish (3) for arbitrary compact subsets.
The Mayer–Vietoris property was established in 3.2. We shall prove (2) in
sections 4.1–4.4 and (3) in section 4.5 and 4.6. The machine proof itself comes
in section 4.7.

In the next part (IV.1) we shall use the machine for its original purpose, namely
immersion theory. In this version, (3) is established for the restricion of X to
X0 where X is obtained from X0 attaching one handle of index < dimX .

The classification theorem for M = Rm

4.1 The following proposition states that the function which restricts the PL
structures to their germs in the origin is a homotopy equivalence in Rm.

Proposition If M = Rm with the standard PL structure, then the restriction
r : PL(Rm)→ PL(0 ⊂ Rm) is a homotopy equivalence.
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Proof We start by stating that, given an open neighbourhood U of 0 in Rm ,
there always exist a homeomorphism ρ between Rm and a neighbourhood of 0
contained in U , which is the identity on a neighbourhood of 0. There also exists
an isotopy H : I × Rm → Rm , such that H(0, x) = x, H(1, x) = ρ(x) for each
x ∈ Rm and H(t, x) = x for each t ∈ I and for each x in some neighbourhood
of 0.

In order to prove that r is a homotopy equivalence we will show that r induces
an isomorphism between the homotopy groups.

(a) Consider a ss–map Si → PL(0 ⊂ Rm). This is nothing but an i–sphere
of structures on an open neighbourhood U of 0, ie, a diagram:

Si × U
φ

//

π1
""F

FF
FF

FF
FF

(Si × U)Θ

p
zzuuu

uu
uu
uu
u

Si

where Θ is a PL structure, p is a PL submersion and ϕ is a homeomorphism.
Then the composed map

Si × Rm f−→Si × U ϕ−→(Si × U)Θ,

where f(τ, x) = (τ, ρ(x)), gives us a sphere of structures on the whole of Rm.
The germ of this structure is represented by ϕ. This proves that r induces an
epimorphism between the homotopy groups.

(b) Let
f0 : Si × Rm → (Si × Rm)Θ0

and
f1 : Si × Rm → (Si × Rm)Θ1

be two spheres of structures on Rm and assume that their germs in Si × 0
define homotopic maps of Si in PL(0 ⊂ Rm). This implies that there exists a
PL structure Θ and a homeomorphism

G: I × Si × U → (I × Si × U)Θ

which represents a map of I × Si in PL (0 ⊂ Rm) and which is such that

G(0, τ, x) = f0(τ, x) G(1, τ, x) = f1(τ, x)

for τ ∈ Si , x ∈ U .

We can assume that G(t, τ, x) is independent of t for 0 ≤ t ≤ ε and 1 − ε ≤
t ≤ 1. Also consider, in the topological manifold I × Si ×Rm, the structure Θ
given by

Θ0 × [0, ε) ∪Θ ∪ (1− ε, 1] ×Θ1.
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The three structures coincide since Θ restricts to Θi on the overlaps, and
therefore Θ is defined on a topological submanifold Q of I × Si × Rm .

Finally we define a homeomorphism

F : I × Si × Rm → QΘ

with the formula

F (t, τ, x) =


G
(
t, τ,H

(
t
ε , x
))

0 ≤ t ≤ ε
G (t, τ, ρ(x)) ε ≤ t ≤ 1− ε
G
(
t, τ,H

(
1−t
ε , x

))
1− ε ≤ t ≤ 1.

(x ∈ Rm). The map F is a homotopy of Θ0 and Θ1 , and then r induces
a monomorphism between the homotopy groups which ends the proof of the
proposition.

4.2 The following result states that a similar property applies to the structures
on the tangent bundle Rm .

Proposition The restriction map

r : PL(TRm)→ PL(TRm|0)

is a homotopy equivalence.

Proof We observe that TRm is trivial and therefore we will write it as

Rm ×X πX−→X
with zero–section 0 × X , where X is a copy of Rm with the standard PL
structure.

Given any neighbourhood U of 0, let H : I×X → X be the isotopy considered
at the beginning of the proof of 4.1. We remember that a PL structure on
TRm is a PL structure of manifolds around the zero- -section. Furthermore
πX is submersive with respect to this structure. The same applies for the PL
structures on TU , where U is a neighbourhood of 0 in X . It is then clear
that by using the isotopy H , or even only its final value ρ : X → U , each PL
structure on TU expands to a PL structure on the whole of TRm. The same
thing happens for each sphere of structures on TU . This tells us that r induces
an epimorphism between the homotopy groups. The injectivity is proved in a
similar way, by using the whole isotopy H . It is not even necessary for H to
be an isotopy, and in fact a homotopy would work just as well.

Summarising we can say that proposition 4.1 is established by expanding iso-
topically a typical neighbourhood of the origin to the whole of Rm , while propo-
sition 4.2 follows from the fact that 0 is a deformation retract of Rm .
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4.3 We will now prove that, still in Rm , if we pass from the structures to
their germs in 0, the differential becomes in fact an isomorphism of ss–sets (in
particular a homotopy equivalence).

Proposition d0 : PL(0 ⊂ Rm) → PL(TRm|0) is an isomorphism of com-
plexes.

Proof As above, we write

TRm : Rm ×X πX−→X (X = Rm)

and we observe that a germ of a structure in TRm|0 is locally a product in
the following way. Given a PL structure Θ near U in Rm × U , where U is
a neighbourhood of 0 in X , then, since πX is a PL submersion, there exists
a neighbourhood V ⊂ U of 0 in X and a PL isomorphism between Θ|TV
and ΘV × U , where ΘV is a PL structure on V , which defines an element of
PL(0 ⊂ Rm). Since the differential d = d0 puts a PL structure around 0 in
the fibre of TRm , then it is clear that d0 is nothing but another way to view
the same object.

4.4 The following theorem is the first important result we were aiming for. It
states that the differential is a homotopy equivalence for M = Rm .

In other words, the classification theorem 3.1 holds for M = Rm .

Theorem d : PL(Rm)→ PL(TRm) is a homotopy equivalence.

Proof Consider the commutative diagram

PL(Rm) d //

r

��

PL(TRm)

r

��
PL(0 ⊂ Rm)

d0

// PL(TRm|0)

By 4.1 and 4.2 the vertical restrictions are homotopy equivalences. Also by 4.3
d0 is a homeomorphism and therefore d is a homotopy equivalence.

The two fundamental fibrations

4.5 The following results which prepare for the proof the classification theo-
rem have a different tone. In a word, they establish that the majority of the
restriction maps in the PL structure spaces are Kan fibrations.
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Theorem For each compact pair C1 ⊂ C2 of M the natural restriction

r : PL(TM |C2)→ PL(TM |C1)

is a Kan fibration.

Proof We need to prove that each commutative diagram

Λk //

��

PL(TM |C2)

r

��
∆k // PL(TM |C1)

can be completed by a map

∆k → PL(TM |C2)

which preserves commutativity.

In order to make the explanation easier we will assume C2 = M and we will
write C = C1 . The general case is completely analogous, the only difference
being that the are more “germs” (To those in C1 we need to add those in C2 ).

We will give details only for the lifting of paths when (k = 1), the general case
being identical.

We start with a simple observation. If ξ/X is a topological m–microbundle on
the PL manifold X , if Θ is a PL structure on ξ and if r : Y → X is a PL map
between PL manifolds, then Θ gives the induced bundle r∗ξ a PL structure in
a natural way using pullback. We will denote this structure by r∗Θ. This has
already been used (implicitly) to define the degeneracy operators ∆i+1 → ∆i

in PL(ξ), in the particular case of elementary simplicial maps cf 2.2.

Consider a path in PL(TM |C), ie, a PL structure Θ′ on I×TU = I×(TM |U),
with U an open neighbourhood of C . A lifting of the starting point of this
path to PL(TM) gives us a PL structure Θ′′ on TM , such that Θ′ ∪ Θ′′ is
a PL structure Θ on the microbundle 0 × TM ∪ I × TU . Without asking for
apologies we will ignore the inconsistency caused by the fact that the base of
the last microbundle is not a PL manifold but a polyhedron given by the union
of two PL manifolds along 0×U . This inconsistency could be eliminated with
some effort. We want to extend Θ to the whole of I × TM . We choose a PL
map r : I ×M → 0 ×M ∪ I × U which fixes 0×M and some neighbourhood
of I × C . Then r∗Θ is the required PL structure.

This ends the proof of the theorem.
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4.6 It is much more difficult to establish the property analogous to 4.5 for the
PL structures on the manifold M , rather than on its tangent bundle:

Theorem For each compact pair C1 ⊂ C2 ⊂Mm the natural restriction

r : PL(C2 ⊂M)→ PL(C1 ⊂M)

is a Kan fibration, if m 6= 4.

Proof If we use cubes instead of simplices we need to prove that each com-
mutative diagram

Ik //

��

PL(C2 ⊂M)

r

��
Ik+1 // PL(C1 ⊂M)

can be completed by a map

Ik+1 → PL(C2 ⊂M)

which preserves commutativity.

We will assume again that C2 = M and we will write C1 = C .

We have a PL k–cube of PL structures on M and an extension to a (k+1)–cube
near C. This implies that we have a structure Θ on Ik ×M and a structure
Θ′ on I(k+1) × U , where U is some open neighbourhood of C . By hypothesis
the two structures coincide on the overlap, ie, Θ | Ik × U = Θ′ | 0× Ik × U .

We want to extend Θ∪Θ′ to a structure Θ over the whole of Ik+1 ×M , such
that Θ coincides with Θ′ on Ik+1× some neighbourhood of C which is possibly
smaller than U .

We will consider first the case k = 0, ie, the lifting of paths.

By the fibration theorem 1.8, if m 6= 4 there exists a sliced PL isomorphism
over I

h : (I × U)Θ′ → I × UΘ

(recall that Θ′|0 = Θ). There is the natural topological inclusion j : I × U ⊂
I ×M so that the composition

j ◦ h : I × U → I ×M
gives a topological isotopy of U in M and thus also of W in M , where W is the
interior of a compact neighbourhood of C in U . From the topological isotopy
extension theorem we deduce that the isotopy of W in M given by (j ◦ h) |W

Geometry & Topology Monographs, Volume 6 (2003)



100 III : The differential

extends to an ambient topological isotopy F : I×M → I×M . Now endow the
range of F with the structure I ×MΘ .

Since it preserves projection to I , the map F provides a 1-simplex of PL(M ),
ie a PL structure Θ on I ×M . It is clear that Θ coincides with Θ′ at least on
I ×W . In fact F | I ×W is the composition of PL maps

(I ×W )Θ′ ⊂ (I × U)Θ′
h→ I × UΘ ⊂ I ×MΘ

and therefore is PL, which is the same as saying that Θ = Θ′ on I ×W .

In the general case of two cubes (Ik+1, Ik) write X∗ for Ik ×X and apply the
above argument to M∗ , U∗ ,W ∗ .

4.7 The immersion theory machine

Notation We write F (X), G(X) for PL(X ⊂ M) and PL(TM |X) respec-
tively.

We can now complete the proof of the classification theorem 4.1 under hypoth-
esis (*).

Proof of 4.1 All the charts on M are intended to be PL homeomorphic
images of Rm and the simplicial complexes are intended to be PL embedded in
some of those charts.

(1) The theorem is true for each simplex A, linearly embedded in a chart of
M .

Proof We can suppose that A ⊂ Rm and observe that A has a base of
neighbourhoods which are canonically PL isomorphic to Rm . The result follows
from 4.4 taking the direct limits.

More precisely, A is the intersection of a nested countable family V1 ⊃ V2 ⊃
· · ·Vi ⊃ · · · of open neighbourhoods each of which is considered as a copy of
Rm . Then

F (A) = lim
→
F (Vi) G(A) = lim

→
G(Vi) dA = lim

→
dVi

Since each dVi is a weak homotopy equivalence by 4.4, then dA is also a weak
homotopy equivalence and hence a homotopy equivalence.

(2) If the theorem is true for the compact sets A,B,A ∩B , then it is true for
A ∪B .
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Proof We have a commutative diagram.

F (A ∪B) //

r1

��

dA∪B &&MM
MM

MM
MM

MM
F (B)

r3

��

dBxxqqq
qq
qq
qq
q

G(A ∪B) //

r2

��

G(B)

r4

��
G(A) // G(A ∩B)

F (A) //

dA

88qqqqqqqqqq
F (A ∩B)

dA∩B
ffMMMMMMMMMM

where the ri are fibrations, by 4.5 and 4.6, and dA , dB , and dA∩B are homotopy
equivalences by hypothesis. It follows that d is a homotopy equivalence between
each of the fibres of r3 and the corresponding fibre of r4 (by the Five Lemma).
By 3.3.1 each of the squares is a pullback, therefore each fibre of r1 is isomorphic
to the corresponding fibre of r3 and similarly for r2 , r4 . Therefore d induces a
homotopy equivalence between each fibre of r1 and the corresponding fibre of
r2 . Since dA is a homotopy equivalence, it follows from the Five Lemma that
dA∪B is a homotopy equivalence. In a word, we have done nothing but appy
proposition II.1.7 several times.

(3) The theorem is true for each simplicial complex (which is contained in a
chart of M ). With this we are saying that if K ⊂ Rm is a simplicial complex,
then

dK : PL(K ⊂ Rm)→ PL(TRm|K)

is a homotopy equivalence.

Proof This follows by induction on the number of simplices of K , using (1)
and (2).

(4) The theorem is true for each compact set C which is contained in a chart.
With this we are saying that if C is a compact set of Rm , then

dC : PL(C ⊂ Rm)→ PL(TRm|C)

is a homotopy equivalence.

Proof C is certainly an intersection of finite simplicial complexes. Then the
result follows using (3) and passing to the limit.

(5) The theorem is true for any compact set C ⊂M .
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Proof C can be decomposed into a finite union of compact sets, each of which
is contained in a chart of M . The result follows applying (2) repeatedly.

(6) The theorem is true for M .

Proof M is the union of an ascending chain of compact sets C1 ⊂ C2 ⊂ · · ·
with Ci ⊂

◦
Ci+1 .

From definitions we have

F (M) = lim
←
F (Ci) G(M) = lim

←
G(Ci) dM = lim

←
dCi

Each dCi is a weak homotopy equivalence by (5), hence dM is a weak homotopy
equivalence.

This concludes the proof of (6) and the theorem

To extend theorem 3.1 to the case m = 4 we would need to prove that, if M is
a PL manifold and none of whose components is compact, then the differential

d : PL(M)→ PL(TM)

is a homotopy equivalence without any restrictions on the dimension.

We will omit the proof of this result, which is established using similar tech-
niques to those used for the case m 6= 4. For m = 4 one will need to use
a weaker version of the fibration property 4.6 which forces the hypothesis of
non-compactness (Gromov 1968).

However it is worth observing that in 4.4 we have already established the result
in the particular case of Mm = Rm which is of importance. Therefore the
classification theorem also holds for R4 , the Euclidean space which astounded
mathematicians in the 1980’s because of its unpredictable anomalies.

Finally, we must not forget that we still have to prove the classification theorem
when Mm is a topological manifold upon which no PL structure has been fixed.
We will do this in the next section.

The proof of the classification theorem gives us a stronger result: if C ⊂ M is
closed, then

dC : PL(C ⊂M)→ PL(TM |C) (4.7.1)

is a homotopy equivalence.

Proof C is the intersection of a nested sequence V1 ⊃ . . . Vi ⊃ of open neigh-
bourhoods in M . Each dVi is a weak homotopy equivalence by the theorem
applied with M = Vi . Taking direct limits we obtain that dC is also a weak
homotopy equivalence.
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Classification via sections

4.8 In order to make the result 4.6 usable and to arrive at a real structure
theorem for PL(M) we need to analyse the complex PL(TM) in terms of
classifying spaces. For this purpose we wish to finish the section by clarifying
the notion of PL structure on a microbundle ξ/X .

As we saw in 2.2 when Θ defines a PL structure on ξ/X we do not need to
require that i : X → UΘ is a PL map. When this happens, as in II.4.1, we say
that a PLµ–structure is fixed on ξ . In this case

X
i−→UΘ

p−→X
is a PL microbundle, which is topologically micro–isomorphic to ξ/X .

Alternatively, we can say that a PLµ–structure on ξ is an equivalence class
of topological micro–isomorphisms f : ξ → η , where η/X is a PL microbundle
and f ∼ f ′ if f ′ = h ◦ f , and h : η → η′ is a PL micro–isomorphism.

In II.4.1 we defined the ss–set PLµ(ξ), whose typical k–simplex is an equiva-
lence class of commutative diagrams

∆k × ξ
f

//

##G
GG

GG
GG

G
η

����
��
��
��

∆k

where f is a topological micro–isomorphism and η is a PL microbundle.

Clearly
PLµ(ξ) ⊂ PL(ξ).

Proposition The inclusion PLµ(ξ) ⊂ PL(ξ) is a homotopy equivalence.

H
Proof We will prove that

πk(PL(ξ),PLµ(ξ)) = 0.

Let k = 0 and Θ ∈ PL(ξ)(0) . In the microbundle

I × ξ : I ×X 1×i−→I × E(ξ)
p−→I ×X

we approximate the zero–section 1 × i using a zero–section j which is PL on
0×X (with respect to the PL structure I × Θ) and which is i on 1×X .
This can be done by the simplicial ε–approximation theorem of Zeeman. This
way we have a new topological microbundle ξ′ on I × X , whose zero–section
is j . To this topological microbundle we can apply the homotopy theorem for

Geometry & Topology Monographs, Volume 6 (2003)



104 III : The differential

microbundles in order to obtain a topological micro–isomorphism I × ξ h−→ξ′ .
If we identify I × ξ with ξ′ through h, we can say that the PL structure I ×Θ
gives us a PL structure on ξ′ . This structure coincides with Θ on 1×X and is,
by construction, a PLµ–structure on 0×X . This proves that each PL structure
can be connected to a PLµ–structure using a path of PL structures.
An analogous reasoning establishes the theorem for the case k > 0 starting
from a sphere of PL structures on ξ/X .

N

4.9 Let ξ = TM and let

TM
f //

��

γmTop

��
M

f
// BTop

be a fixed classifying map. We will recall here some objects which have been
defined previously. Let

B : Topm/PLm −→ BPLm
pm−→BTopm

be the fibration II.3.15; let

TMf = f∗(B) = TM [Topm/PLm]

be the bundle associated to TM with fibre Topm/PLm , and let

Lift(f)

be the space of the liftings of f to BPLm .

Since there is a fixed PL structure on M , we can assume that f is precisely a
map with values in BPLm composed with pm.

Classification theorem via sections Assuming the hypothesis of theorem
3.1 we have homotopy equivalences

PL(M) ' Lift(f) ' SectTM [Topm/PLm].

Proof Apply 3.1, 4.8, II.4.1, II.4.1.1.

The theorem above translates the problem of determining PL(TM) to an ob-
struction theory with coefficients in the homotopy groups πk(Topm/PLm).
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5 Classification of PL–structures on a
topological manifold M . Relative versions

We will now abandon the hypothesis (*) of section 3, ie, we do not assume that
there is a PL structure fixed on M and we look for a classification theorem for
this general case. Choose a topological embedding of M in an open set N of
an Euclidean space and a deformation retraction r : N → M ⊂ N. Consider
the induced microbundle r∗TM whose base is the PL manifold N . The reader
is reminded that

r∗TM : N j−→M ×N p2−→N

where p2 is the projection and j(y) = (r(y), y). Since N is PL, then the space
PL(r∗TM) is defined and it will allow us to introduce a new differential

d : PL(M)→ PL(r∗TM)

by setting dΘ := Θ×N .

5.1 Classification theorem

d : PL(M)→ PL(r∗TM) is a homotopy equivalence provided that m 6= 4.

The proof follows the same lines as that of Theorem 3.1, with some technical
details added and is therefore omitted.

5.2 Theorem Let f : M → BTopm be a classifying map for TM . Then

PL(M) ' Sect(TMf ).

Proof Consider the following diagram of maps of microbundles

TM
i //

��

r∗TM //

��

TM
f //

��

γmTop

��
M

i // N
r // M

f
// BTopm.

Passing to the bundles induced by the fibration

B : Topm/PLm → BPLm → BTopm

we have
PL(r∗TM) ' Sect((r∗TM)f◦r)

i∗' Sect(TMf ).

Geometry & Topology Monographs, Volume 6 (2003)



106 III : The differential

Therefore PL(M) is homotopically equivalent to the space of sections of the
Topm/PLm–bundle associated to TM.

It follows that in this case as well the problem is translated to an obstruction
theory with coefficients in πk(Topm/PLm).

5.3 Relative version

Let M be a topological manifold with the usual hypothesis on the dimension,
and let C be a closed set in M. Also let PL(MrelC) be the space of PL struc-
tures of M , which restrict to a given structure, Θ0 , near C , and let PL(TM
rel C) be defined analogously.

Theorem d : PL(M rel C)→ PL(TM rel C) is a homotopy equivalence.

Proof Consider the commutative diagram

PL(M) d //

r1

��

PL(M)

r2

��
PL(C ⊂M)

d
// PL(TM |C)

where we have written TM for r∗TM and TM |C for r∗TM |r−1(C) ; Θ0 defines
basepoints of both the spaces in the lower part of the diagram and r1 , r2 are
Kan fibrations. The complexes PL(M rel C), and PL(TM rel C) are the fibres
of r1 and r2 respectively. The result follows from 4.7.1 and the Five lemma.

Corollary PL(MrelC) is homotopically equivalent to the space of those sec-
tions of the Topm/PLm– bundle associated to TM which coincide with a sec-
tion near C (precisely the section corresponding to Θ0 ).

5.4 Version for manifolds with boundary

The idea is to reduce to the case of manifolds without boundary. If Mm is
a topological manifold with boundary ∂M , we attach to M an external open
collar, thus obtaining

M+ = M ∪∂ ∂M × [0, 1)

and we define TM := TM+|M .

If ξ is a microbundle on M , we define ξ ⊕ Rq (or even better ξ ⊕ εq ) as the
microbundle with total space E(ξ)× Rq and projection

E(ξ)× Rq → E(ξ)
pξ−→M.
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This is, obviously, a particular case of the notion of direct sum of locally trivial
microbundles which the reader can formulate.

Once a collar (−∞, 0] × ∂M ⊂M is fixed we have a canonical isomorphism

TM+|∂M ≈ T (∂M) ⊕R (5.4.1)

and we require that a PL structure on TM is always so that it can be des-
ospended according to (5.4.1) on the boundary ∂M. We can then define a
differential

d : PL(M)→ PL(TM)

and we have:

Theorem If m 6= 4, 5, then d is a homotopy equivalence .

Proof (Hint) Consider the diagram of fibrations

PL(M+rel ∂M × [0, 1)) d //

��

PL(TM+rel ∂M × [0, 1))

��
PL(M) d //

r1

��

PL(TM)

r2

��
PL(TM) d // PL(T∂M)

The reader can verify that the restrictions r1 , r2 exist and are Kan fibrations
whose fibres are homotopically equivalent to the upper spaces and that d is a
morphism of fibrations. The differential at the bottom is a homotopy equiva-
lence as we have seen in the case of manifolds without boundary, the one at the
top is a homotopy equivalence by the relative version 5.3 Therefore the result
follows from the Five lemma.

5.5 The version for manifolds with boundary can be combined with the rel-
ative version. In at least one case, the most used one, this admits a good
interpretation in terms of sections.

Theorem If ∂M ⊂ C and m 6= 4, (giving the symbols the obvious meanings)
then there is a homotopy equivalence:

PL(MrelC) ' Sect (TMf relC)

where f : M → BTopm is a classifying map which extends such a map already
defined near C .
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Note If ∂M 6⊂ C , then Sect(TMf ) has to be substituted by a more com-
plicated complex, which takes into account the sections on ∂M with values
in Topm−1/PLm−1 . However it can be proved, in a non trivial way, that, if
m ≥ 6, then there is an equivalence analogous to that expressed by the theorem.

Corollary If M is parallelizable, then M admits a PL structure.

Proof (TM+)f is trivial and therefore there is a section.

Proposition Each closed compact topological manifold has the same homo-
topy type of a finite CW complex.

Proof [Hirsch 1966] established that, if we embed M in a big Euclidean space
RN , then M admits a normal disk bundle E .

E is a compact manifold, which has the homotopy type of M and whose tangent
microbundle is trivial. Therefore the result follows from the Corollary.

5.6 We now have to tackle the most difficult part, ie, the calculation of the
coefficients πk(Topm/PLm) of the obstructions. For this purpose we need to
recall some important results of the immersion theory and this will be done in
the next part.

Meanwhile we observe that, since

PLm ⊂ Topm → Topm/PLm

is a Kan fibration, we have:

πk(Topm/PLm) ≈ πk(Topm,PLm).
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