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the analytic functions on the deformation space of hyperbolic structures.
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1 Introduction

Let M be the complement of a hyperbolic knot K in S3 . Through the study of
Kashaev’s conjecture, we have found a complex function which gives the volume
and the Chern–Simons invariant of the complete hyperbolic structure of M at
the critical point corresponding to the promised solution to the hyperbolicity
equations for M , see [2, 4] for details.

The purpose of this article is to explain how to construct such complex functions
for the non-complete hyperbolic structures of M . Such functions are closely
related to the analytic functions on the deformation space of the hyperbolic
structures of M , parametrized by the eigenvalue of the holonomy representation
of the meridian of K , which reveal a complex-analytic relation between the
volumes and the Chern–Simons invariants of the hyperbolic structures of M ,
see [3, 5] for details.

In this note, we suppose K is 52 for simplicity which is represented by the
diagram D depicted in Figure 1.
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Figure 1

2 Geometry of a knot complement

2.1 Ideal triangulations

We first review an ideal triangulation of M due to D. Thurston. Let Ṁ denote
M with two poles ±∞ of S3 removed. Then, Ṁ decomposes into 5 ideal octa-
hedra corresponding to the 5 crossings of D , each of which further decomposes
into 4 ideal tetrahedra around an axis, as shown in Figure 2.

Figure 2

In fact, we can reocover Ṁ by glueing adjacent tetrahedra as shown in Figure 3.
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Figure 3

As usual, we put a hyperbolic structure on each tetrahedron by assigning a
complex number, called modulus, to the edge corresponding to the axis as shown
in Figure 4. In what follows, we denote the tetrahedron with modulus z by
T (z).

Figure 4

Let B be the intersection between T (a1)∪T (b1) and T (b3)∪T (c3). Then, each
of

T (a1), T (b1), T (b3), T (c3)

intersects ∂N(B∪K) in two triangles, and they are essentially one-dimensional
objects in S3 \N(B ∪K). On the other hand, each of

T (c1), T (d1), T (a2), T (b2), T (d2), T (a3), T (d3), T (a4), T (b4), T (c4), T (c5)

intersects ∂N(B ∪K) in two triangles and one quadrangle, and they are essen-
tially two-dimensional objects in S3 \ N(B ∪ K). Thus, by contracting these
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15 tetrahedra, we obtain an ideal triangulation S of M with

T (c2), T (d4), T (a5), T (b5), T (d5).

Figure 5 exhibits the triangulation of ∂N(B ∪ K) induced by S , where each
couple of edges labeled with the same number are identified.

Figure 5

2.2 Hyperbolicity equations

If c2, d4, a5, b5, d5 above give a hyperbolic structure of M , the product of the
moduli around each edge in S should be 1, which is called the hyperbolicity
equations and can be read from Figure 5 as follows.

d4b5 = a5b5d5 = 1,

c2a5(1− 1/d4)
1− d4

· (1− 1/d5)(1− 1/c2)(1− 1/b5)
(1− a5)(1− b5)

= 1,

c2(1− 1/a5)
(1− d5)(1− c2)

· (1− 1/d5)(1− 1/b5)
(1− d5)(1− a5)(1− d4)

= 1,

d4(1− 1/a5)(1− 1/d4)
1− b5

· d5(1− 1/c2)
1− c2

= 1.

It is easy to observe that these equations are generated by

d4b5 = a5b5d5 = 1,
c2a5

d4
=

1− 1/a5

(1− 1/c2)(1− d5)
=

(1− 1/a5)(1− d4)
1− b5

=
c2

d5

,

which suggests to put

c2 = yξ, d4 = x/ξ, a5 = x/y, b5 = ξ/x, d5 = y/ξ

and to rewrite the hyperbolicity equations as follows.

(1− y/x)(1− x/ξ)
1− ξ/x

=
1− y/x

(1− y/ξ)(1− 1/yξ)
= ξ2.
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Figure 6

Note that the variables x, y correspond to the interior edges of a graph depicted
in Figure 6, which is D with some edges deleted.

A solution to the equations above determines a hyperbolic structure of M ,
where ξ is nothing but the eigenvalue of the holonomy representation of the
meridian of K . The set D of such solutions is called the deformation space of
the hyperbolic structures of M and can be parametrized by ξ or the eigenvalue
η of the holonomy representation of the longitude of K . In our example, η is
given by

η =
yξ6

x
· (1− 1/yξ) =

yξ6

x
· 1− ξ/x

(1− x/ξ)(1− y/ξ)
·

Note that the factors 1− x/ξ, 1− y/ξ, 1− ξ/x and 1− 1/yξ correspond to the
corners of D which touch the unbounded regions.

3 Potential functions

Curious to say, we can always construct a potential function for the hyperbolicity
equations and η combinatorially by using Euler’s dilogarithm function

Li2(z) = −
∫ z

0

log(1− w)
w

dw,

where we remark that the volume of a tetrahedron with modulus z is given by

D(z) = Im Li2(z) + log |z| arg(1− z).
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3.1 Neumann–Zagier’s functions

In fact, we define V (x, y, ξ) by

−Li2(1/yξ) + Li2(y/ξ)− Li2(y/x) + Li2(ξ/x) + Li2(x/ξ) + log ξ log
x2

y2ξ6
− π2

6
,

the principal part of which is nothing but the sum of dilogarithm functions
associated to the corners of the graph as shown in Figure 7.

Figure 7

Then, we have

x
∂V

∂x
= log

ξ2(1− ξ/x)
(1− y/x)(1− x/ξ)

, y
∂V

∂y
= log

1− y/x

ξ2(1− y/ξ)(1− 1/yξ)
,

both of which vanish on D , and

ξ
∂V

∂ξ
= log

x2(1− x/ξ)(1− y/ξ)
y2ξ12(1− ξ/x)(1− 1/yξ)

= log
{

x

yξ6
· 1
1− 1/yξ

}2

− x
∂V

∂x
− y

∂V

∂y

= log
{

x

yξ6
· (1− x/ξ)(1− y/ξ)

1− ξ/x

}2

+ x
∂V

∂x
+ y

∂V

∂y
,

that is,

ξ
∂V

∂ξ
= − log η2

on D , which shows V (x, y, eu) coincides with Φ(u) given in [3, Theorem 3].

3.2 Dehn fillings

Furthermore, for a slope α ∈ Q, we put

Vα(x, y, ξ) = V (x, y, ξ) +
log ξ(2π

√
−1− p log ξ)
q

,
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where p, q ∈ Z denote the numerator and the denominator of α. Then, we have

ξ
∂Vα

∂ξ
= ξ

∂V

∂ξ
+

2π
√
−1− p log ξ2

q
=

2π
√
−1− p log ξ2 − q log η2

q
,

and so a solution (xα, yα, ξα) to the equations

dVα(x, y, ξ) = 0

determines the complete hyperbolic structure of the closed 3-manifold Mα ob-
tained from M by α Dehn filling. Note that, by choosing r, s ∈ Z such that
ps − qr = 1, we can compute the logarithm of the eigenvalue of the holonomy
representation of the core geodesic γα of Mα which is related to the length and
the torsion of γα as follows, see [3, Lemma 4.2].

log ξrηs =
sπ
√
−1− log ξ

q
=

length(γα) +
√
−1 · torsion(γα)
2

·

Volumes and Chern–Simons invariants

3.3 Yoshida’s functions

As in [4], we can observe

Im Vα(x, y, ξ) = −D(1/yξ) + D(y/ξ)−D(y/x) + D(ξ/x) + D(x/ξ)

+ log |x| · Im x
∂Vα

∂x
+ log |y| · Im y

∂Vα

∂y
+ log |ξ| · Im ξ

∂Vα

∂ξ
,

and so
Im Vα(xα, yα, ξα) = vol(Mα).

To detect Re Vα(xα, yα, ξα), we shall consider

R(x, y, ξ) = −R(1/yξ) + R(y/ξ)−R(y/x) + R(ξ/x) + R(x/ξ)− π2

6
,

where R(z) denotes Roger’s dilogarithm function defined by

R(z) = Li2(z) + log z log(1− z)/2.

Then, R(x, y, ξ) can be expressed as

−Li2(1/yξ) + Li2(y/ξ)− Li2(y/x) + Li2(ξ/x) + Li2(x/ξ)

− log x

2

(
x

∂V

∂x
− log ξ2

)
− log y

2

(
y
∂V

∂y
+ log ξ2

)
− log ξ

2

(
ξ
∂V

∂ξ
− log

x2

y2ξ12

)
,

and so R(x, y, ξ) agrees with

V (x, y; ξ) + log ξ log η
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on D and with

Vα(x, y, ξ)− log ξ(2π
√
−1− p log ξ)
q

+ log ξ log η = Vα(x, y, ξ)− π
√
−1 · log ξ

q

at (xα, yα, ξα) ∈ D . Therefore, we have

R(xα, yα, ξα) = Vα(xα, yα, ξα)− sπ2 + π
√
−1 · log ξα

q
+

sπ2

q

= Vα(xα, yα, ξα) +
π
√
−1
2

· {length(γα) +
√
−1 · torsion(γα)}+

sπ2

q
·

In particular,

Im
2
π
·R(xα, yα, ξα) = Im

2
π
·Vα(xα, yα, ξα)+

2 log |ξα|
q

=
2
π
·vol(Mα)+length(γα),

which shows that, up to a pure imaginary constant,
2

π
√
−1

R(x, y, eu)

must coincide with 2πf(u) of [3, Theorem 2], and that

Re
2
π
·R(xα, yα, ξα) = Re

2
π
·
{

Vα(xα, yα, ξα) +
sπ2

q

}
− torsion(γα)

must coincide with −4πCS(Mα)− torsion(γα). Consequently, up to some con-
stant which is independent of α, we have

Re
{

Vα(xα, yα, ξα) +
sπ2

q

}
= −2π2CS(Mα).

4 Concluding remarks

We redefine Vα(x, y, ξ) as follows.

Vα(x, y, ξ) = V (x, y, ξ) +
log ξ(2π

√
−1− p log ξ) + sπ2

q
·

Then, dVα(x, y, ξ) = 0 gives the hyperbolicity equations for Mα , and

Vα(xα, yα, ξα) = −2π2CS(Mα) + vol(Mα)
√
−1

up to a real constant, where (xα, yα, ξα) is a solution to the equations above.

We finally remark that such a construction always works, even for a link, and
the analytic functions in [3, 5] are now combinatorially constructed up to a
constant. For the figure-eight knot and α ∈ Z, our potential function coincides
with the function in [1] which appears in the “optimistic” limit of the quantum
SU(2) invariants of Mα .
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