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Abstract This talk is a report on joint work with A. Vaintrob [12, 13]. It
is organised as follows. We begin by recalling how the classical Matrix-Tree
Theorem relates two different expressions for the lowest degree coefficient of
the Alexander-Conway polynomial of a link. We then state our formula for
the lowest degree coefficient of an algebraically split link in terms of Milnor’s
triple linking numbers. We explain how this formula can be deduced from a
determinantal expression due to Traldi and Levine by means of our Pfaffian
Matrix-Tree Theorem [12]. We also discuss the approach via finite type
invariants, which allowed us in [13] to obtain the same result directly from
some properties of the Alexander-Conway weight system. This approach
also gives similar results if all Milnor numbers up to a given order vanish.
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1 The Alexander-Conway polynomial and its lowest
order coefficient

Let L be an oriented link in S3 with m (numbered) components. Its Alexander-
Conway polynomial

∇L(z) =
∑

i≥0

ci(L)zi ∈ Z[z]

is one of the most thoroughly studied classical isotopy invariants of links. It
can be defined in various ways. For example, if V is a Seifert matrix for L,
then

∇L(z) = det(tV − t−1V T ) (1)

where z = t − t−1 . Another definition is via the skein relation

∇L+ −∇L− = z∇L0 , (2)
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Figure 1: A skein triple

where (L+, L−, L0) is any skein triple (see Figure 1).

Indeed, the Alexander-Conway polynomial is uniquely determined by the skein
relation (2) and the initial conditions

∇Um
=

{

1 if m = 1

0 if m ≥ 2,
(3)

where Um is the trivial link with m components.

Hosokawa [7], Hartley [6, (4.7)], and Hoste [8] showed that the coefficients
ci(L) of ∇L for an m-component link L vanish when i ≤ m − 2 and that the
coefficient cm−1(L) depends only on the linking numbers ℓij(L) between the
ith and j th components of L. Namely,

cm−1(L) = detΛ(p), (4)

where Λ = (λij) is the matrix formed by linking numbers

λij =

{

−ℓij(L), if i 6= j
∑

k 6=i ℓik(L), if i = j
(5)

and Λ(p) denotes the matrix obtained by removing from Λ the pth row and
column (it is easy to see that detΛ(p) does not depend on p).

Formula (4) can be proved using the Seifert matrix definition (1) of ∇L . We
will not give the proof here, but let us indicate how linking numbers come in
from this point of view. Let Σ be a Seifert surface for L. The key point is that
the Seifert form restricted to H1(∂Σ; Z) ⊂ H1(Σ; Z) is just given by the linking
numbers ℓij . In particular, for an appropriate choice of basis for H1(Σ; Z), the
Seifert matrix V contains the matrix Λ(p) as a submatrix, which then leads to
Formula (4).

Hartley and Hoste also gave a second expression for cm−1(L) as a sum over
trees:

cm−1(L) =
∑

T

∏

{i,j}∈edges(T )

ℓij(L) , (6)
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where T runs through the spanning trees in the complete graph Km . (The
complete graph Km has vertices {1, 2, . . . ,m}, and one and only one edge for
every unordered pair {i, j} of distinct vertices.)

For example, if m = 2 then c1(L) = ℓ12(L), corresponding to the only spanning
tree in

K2 = b b

21

If m = 3, then

c2(L) = ℓ12(L)ℓ23(L) + ℓ23(L)ℓ13(L) + ℓ13(L)ℓ12(L) ,

corresponding to the three spanning trees of K3 (see Figure 2).

b b
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b b
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Figure 2: The complete graph K3 and its three spanning trees

2 The classical Matrix-Tree Theorem

It is a pleasant exercise to check by hand that Formulas (4) and (6) give the
same answer for m = 2 and m = 3. For general m this equality can be deduced
from the classical Matrix-Tree Theorem applied to the complete graph Km .

The statement of this theorem is as follows. Consider a finite graph G with
vertex set V and set of edges E . If we label each edge e ∈ E by a variable xe ,
then a subgraph of G given as a collection of edges S ⊂ E corresponds to the
monomial

xS =
∏

e∈S

xe.

Form a symmetric matrix Λ(G) = (λij), whose rows and columns are indexed
by the vertices of the graph and entries given by

λij = −
∑

e∈E,

v(e)={i,j}

xe, if i 6= j, and λii =
∑

e∈E,

i∈v(e)

xe.

Here, we denote by v(e) ⊂ V the set of endpoints of the edge e. Since the
entries in each row of Λ(G) add up to zero, the determinant of this matrix
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vanishes and the determinant of the submatrix Λ(G)(p) obtained by deleting
the pth row and column of Λ(G) is independent of p. This gives a polynomial

DG = det Λ(G)(p) (7)

in variables xe which is called the Kirchhoff polynomial of G. The Matrix-Tree

Theorem [16, Theorem VI.29][2, Theorem II.12] states that this polynomial is
the generating function of spanning subtrees of the graph G (i.e. connected
acyclic subgraphs of G with vertex set V ). In other words, one has

DG =
∑

T

xT , (8)

where the sum is taken over all the spanning subtrees in G.

In the case of the complete graph Km , let us denote its Kirchhoff polynomial
by Dm . If we write xij = xji for the indeterminate xe corresponding to the
edge e = {i, j}, then Λ(Km) becomes identified with the matrix Λ defined in
(5). Formula (4) says that the coefficient cm−1(L) is the Kirchhoff polynomial
Dm evaluated at xij = ℓij(L), while Formula (6) says that cm−1(L) is the
generating function of spanning trees of Km , again evaluated at xij = ℓij(L).
Thus, the Matrix-Tree Theorem (8) applied to the complete graph Km shows
that these two formulas for cm−1(L) are equivalent.

3 An interpretation via finite type invariants

Formula (6) can also be proved directly by induction on the number of compo-
nents of L [6, 8]. This proof can be formulated nicely in the language of finite
type (Vassiliev) invariants, as follows. (See [13] for more details.)

Recall that the coefficient cn of the Alexander-Conway polynomial is a finite
type invariant of degree n. Let us denote its weight system by Wn . It can be
computed recursively by the formula

Wn( ) = Wn−1( ) (9)

which follows immediately from the skein relation (2). For a chord diagram D
on m circles with n chords, let D′ be the result of smoothing of all chords by
means of (9). If D′ consists of just one circle, then

Wn(D) = W0(D
′) = 1 .

Otherwise, one has Wn(D) = W0(D
′) = 0.
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To see how this relates to formula (6), note that smoothing of a chord cannot
reduce the number of circles by more than one. Thus, for Wn(D) to be non-zero
we need at least m − 1 chords. Moreover, the diagrams D with exactly m − 1
chords satisfying Wm−1(D) 6= 0 must have the property that if each circle of D
is shrinked to a point, the resulting graph formed by the chords is a tree. See
Figure 3 for an example of a chord diagram D whose associated graph is the
tree b b b

1 2 3
.

W2(
1 2 3

) = W0( ) = 1

Figure 3: A degree 2 chord diagram D with W2(D) = 1

In other words, the weight system Wm−1 takes the value 1 on precisely those
chord diagrams whose associated graph is a spanning tree on the complete graph
Km , and Wm−1 is zero on all other chord diagrams.

This simple observation implies Formula (6), as follows. The linking number
ℓij is a finite type invariant of order 1 whose weight system is the linear form
dual to the chord diagram having just one chord connecting the ith and j th
circle. It follows that the right hand side of (6) (which is the spanning tree
generating function of Km evaluated in the ℓij ’s) is a finite type invariant of
order m−1 whose weight system is equal to Wm−1 . This proves Formula (6) on
the level of weight systems. The proof can be completed using the fact that the
Alexander-Conway polynomial is (almost) a canonical invariant [1] (see [13]).

4 Algebraically split links and Levine’s formula

If the link L is algebraically split, i.e. all linking numbers ℓij vanish, then not
only cm−1(L) = 0, but, as was proved by Traldi [14, 15] and Levine [10], the
next m − 2 coefficients of ∇L also vanish

cm−1(L) = cm(L) = . . . = c2m−3(L) = 0.

For algebraically split oriented links, there exist well-defined integer-valued iso-
topy invariants µijk(L) called the Milnor triple linking numbers. These in-
variants generalize ordinary linking numbers, but unlike ℓij , the triple linking
numbers are antisymmetric with respect to their indices, µijk(L) = −µjik(L) =
µjki(L). Thus, for an algebraically split link L with m components, we have
(

m
3

)

triple linking numbers µijk(L) corresponding to the different 3-component
sublinks of L.
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Levine [10] (see also Traldi [15, Theorem 8.2]) found an expression for the
coefficient c2m−2(L) of ∇L for an algebraically split m-component link in terms
of triple Milnor numbers

c2m−2(L) = detΛ(p), (10)

where Λ = (λij) is an m × m skew-symmetric matrix with entries

λij =
∑

k

µijk(L), (11)

and Λ(p) , as before, is the result of removing the pth row and column.

For example, if m = 3, we have

Λ =





0 µ123(L) µ132(L)
µ213(L) 0 µ231(L)
µ312(L) µ321(L) 0





and

c4(L) = detΛ(3) = −µ123(L)µ213(L) = µ123(L)2 . (12)

This formula (in the m = 3 case) goes back to Cochran [3, Theorem 5.1].

Similar to Formula (4) for cm−1(L), Levine’s proof of Formula (10) uses the
Seifert matrix definition (1) of ∇L .

5 The Pfaffian-tree polynomial Pm

Formula (10) is similar to the first determinantal expression (4). One of the
main results of [12, 13] is that there is an analog of the tree sum formula (6)
for algebraically split links. To state this result, we need to introduce another
tree-generating polynomial analogous to the Kirchhoff polynomial.

Namely, instead of usual graphs whose edges can be thought of as segments
joining pairs of points, we consider 3-graphs whose edges have three (distinct)

vertices and can be visualized as triangles or Y-shaped objects with the
three vertices at their endpoints.

The notion of spanning trees on a 3-graph is defined in the natural way. A
sub-3-graph T of a 3-graph G is spanning if its vertex set equals that of G,
and it is a tree if its topological realization (i.e. the 1-complex obtained by

gluing together Y-shaped objects corresponding to the edges of T ) is a
tree (i.e. it is connected and simply connected). See Figure 4 for an example.
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Similarly to the variables xij of Dm , for each triple of distinct numbers i, j, k ∈
{1, 2, . . . ,m} we introduce variables yijk antisymmetric in i, j, k

yijk = −yjik = yjki, and yiij = 0 .

These variables correspond to edges {i, j, k} of the complete 3-graph Γm with
vertex set {1, . . . ,m}.

As in the case of ordinary graphs, the correspondence

variable yijk 7→ edge {i, j, k} of Γm

assigns to each monomial in yijk a sub-3-graph of Γm .

The generating function of spanning trees in the complete 3-graph Γm is called
the Pfaffian-tree polynomial Pm in [12, 13]. It is

Pm =
∑

T

yT

where the sum is over all spanning trees T of Γm , and yT is, up to sign, just the
product of the variables yijk over the edges of T . Because of the antisymmetry
of the yijk ’s, signs cannot be avoided here. In fact, the correspondence between
monomials and sub-3-graphs of Γm is not one-to-one and a sub-3-graph deter-
mines a monomial only up to sign. But these signs can be fixed unambiguously,
although we won’t explain this here (see [12, 13]).

If m is even, then one has Pm = 0, because there are no spanning trees in
3-graphs with even number of vertices. If m is odd, then Pm is a homogeneous
polynomial of degree (m − 1)/2 in the yijk ’s. For example, one has

P3 = y123

(the 3-graph Γ3 with three vertices and one edge is itself a tree). If m = 5, we
have

P5 = y123 y145 − y124 y135 + y125 y134 ± . . . , (13)

where the right-hand side is a sum of 15 similar terms corresponding to the
15 spanning trees of Γ5 . If we visualize the edges of Γm as Y-shaped objects

, then the spanning tree corresponding to the first term of (13) will look
like on Figure 4.

We can now state one of the main results of [12, 13].

Theorem 5.1 [12, 13] Let L be an algebraically split oriented link with m
components. Then

c2m−2(L) =
(

Pm(µijk(L))
)2

, (14)
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Figure 4: A spanning tree in the complete 3-graph Γ5 . It has two edges, {1, 2, 3} and
{1, 4, 5} , and contributes the term y123 y145 to P5 .

where Pm(µijk(L)) means the result of evaluating the polynomial Pm at yijk =
µijk(L).

For m = 3, we find again Cochran’s formula (12), but for m ≥ 5 our formula
is new. For example, when m = 5, we obtain that the first non-vanishing
coefficient of ∇L(z) for algebraically split links with 5 components is equal to

c8(L) = P5(µijk(L))2

=
(

µ123(L)µ145(L) − µ124(L)µ135(L) + µ125(L)µ134(L) ± . . .
)2

,

where P5(µijk(L)) consists of 15 terms corresponding to the spanning trees of
Γ5 .

6 A proof via the Pfaffian Matrix-Tree Theorem of
[12]

The first proof of Theorem 5.1 was given in [12]. One of the main results of that
paper is a Pfaffian Matrix-Tree Theorem which is the analog for 3-graphs of
the classical Matrix-Tree Theorem (see Section 2). It expresses the generating
function of spanning trees on a 3-graph G as the Pfaffian of a matrix Λ(G)(p)

associated to G.

If G is the complete 3-graph Γm , this theorem says the following.

Theorem 6.1 [12] The generating function of spanning trees on the complete
3-graph Γm is given by

Pm = (−1)p−1 Pf(Λ(Γm)(p)) ,

where Λ(Γm) is the m × m skew-symmetric matrix with entries Λ(Γm)ij =
∑

k yijk, and Pf denotes the Pfaffian.
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Recall that the Pfaffian of a skew-symmetric matrix A is a polynomial in the
coefficients of A such that

(Pf A)2 = detA .

The matrix Λ defined in (11) is obtained from Λ(Γm) by substituting the triple
Milnor number µijk(L) for the indeterminate yijk . Hence, Theorem 6.1 implies
Theorem 5.1, since we know from Formula (10) that

c2m−2(L) = detΛ(p) = (Pf Λ(p))2 .

For a definition of the matrix Λ(G) and a statement of the Pfaffian Matrix-Tree
Theorem in the case of general 3-graphs G, as well as for a proof, see [12].

7 A proof via finite type invariants [13]

As explained in Section 3, the appearance of spanning trees in Formula (6)
for the coefficient cm−1 is very natural from the point of view of finite type
invariants. A similar approach also leads to a proof of Theorem 5.1 via finite
type invariants. This argument naturally generalizes to higher Milnor numbers.
Let us briefly describe this approach (see [13] for details).

The connection between the Alexander-Conway polynomial and the Milnor
numbers is established by studying their weight systems and then using the
Kontsevich integral. In the dual language of the space of chord diagrams, the
Milnor numbers correspond to the tree diagrams (see [5]) and the Alexander-
Conway polynomial can be described in terms of certain trees and wheel di-
agrams (see [9] and [17]). However, for first non-vanishing terms, only tree
diagrams matter, as the following Vanishing Lemma shows.

Proposition 7.1 (Vanishing Lemma [13]) Let D be a degree-d diagram on
m ≥ 2 solid circles, such that D has no tree components of degree ≤ n − 1.
Let Wd be the Alexander-Conway weight system. If d ≤ n(m − 1) + 1, then
Wd(D) = 0 unless D has exactly m− 1 components, each of which is a tree of
degree ≥ n.

This result is the generalization of the fact, shown in Section 3, that the
Alexander-Conway weight system Wd for m-component links is always zero
in degrees d < m − 1. Indeed, this fact is the n = 1 case of the Vanishing
Lemma. However, the proof in the general case is more complicated. It uses
properties of the Alexander-Conway weight system from [4] which are based on
the connection between ∇ and the Lie superalgebra gl(1|1).
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In view of the relationship between Milnor numbers and tree diagrams studied in
[5], the Vanishing Lemma implies in a rather straightforward way the following
result, which was first proved by Traldi [15] and Levine [11] using quite different
methods.

Proposition 7.2 [15, 11] Let L be an oriented link such that all Milnor
invariants of L of degree1 ≤ n − 1 vanish. Then for the coefficients ci(L) of
the Alexander-Conway polynomial ∇L(z) =

∑

i≥0 ci(L)zi we have

(i) ci(L) = 0 for i < n(m − 1),

(ii) cn(m−1)(L) is a homogeneous polynomial F
(n)
m of degree m − 1 in the

Milnor numbers of L of degree n.

Using the approach via Seifert surfaces, Levine [11] (see also Traldi [14, 15])

gives a formula for the polynomial F
(n)
m as a determinant in the degree n Milnor

numbers of L. For n = 1 and n = 2, this formula specializes to Formulas (4)
and (10), respectively.

From the point of view of the Alexander-Conway weight system, however, one

is lead to an expression for the polynomial F
(n)
m in terms of the spanning tree

polynomials Dm and Pm . Indeed, as explained in Section 3, for n = 1 the

polynomial F
(1)
m is easily recognized to be the spanning tree polynomial Dm in

the linking numbers ℓij . How does this generalize to higher n?

Consider for example the case n = 2, that is, the case of algebraically split
links. Proposition 7.2(ii) tells us that c2m−2(L) is a homogeneous polynomial

F
(2)
m of degree m − 1 in triple Milnor numbers µijk(L).

Theorem 7.3 [13] The polynomial F
(2)
m is equal to P2

m , the square of the
Pfaffian-tree polynomial Pm .

Here is a sketch of the proof. Triple Milnor numbers are dual to Y-shaped

diagrams , and the coefficients of the polynomial F
(2)
m can be computed

from the Alexander-Conway weight system. For example, the coefficient of the
monomial

µ123 µ145 µ235 µ345

in F
(2)
5 is equal to the value of the Alexander-Conway weight system on the

diagram in Figure 5.

1Here, the degree of a Milnor invariant is its Vassiliev degree, which is one less than
its length (the number of its indices). For example, linking numbers have degree one,
and triple linking numbers have degree two.
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1 5

2 4

3

Figure 5: A diagram contributing to F
(2)
5

The coefficients of F
(2)
m can be computed recursively by the relation in Figure 6,

which follows from identities proved in [4].

≡ + − −

Figure 6: An identity modulo the Alexander-Conway relations

Indeed, the relation in Figure 6 together with the smoothing relation (9) allows
one to reduce a diagram consisting of m − 1 Y’s on m solid circles to a linear
combination of diagrams consisting of m−3 Y’s on m−2 solid circles. (We are

leaving out some details here.) This gives recursion formulas expressing F
(2)
m

in terms of F
(2)
m−2 .

Let us state an example of such a recursion formula. It is convenient to write
the antisymmetric triple Milnor number formally as an exterior product

µijk = vi ∧ vj ∧ vk

and to consider F
(2)
m as an expression in the indeterminates vi :

F (2)
m = F (2)

m (v1, v2, . . . , vm) .

Then the relation in Figure 6 implies for example that F
(2)
m satisfies the recur-

sion relation
[

∂2 F
(2)
m

∂µ123 ∂µ145

]

v1=0

= F
(2)
m−2(v3 + v4, v2, v5, . . . ) + F

(2)
m−2(v2 + v5, v3, v4, . . . )

− F
(2)
m−2(v2 + v4, v3, v5, . . . ) − F

(2)
m−2(v3 + v5, v2, v4, . . . ) .

It turns out that this and similar recursion relations are enough to determine

the polynomial F
(2)
m for all m, once one knows it for m = 2 and m = 3. But
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1 3

2

Figure 7: The only diagram contributing to F
(2)
3

it is easy to see that F
(2)
2 = 0, while F

(2)
3 = µ2

123 , the only non-zero diagram

contributing to F
(2)
3 being the diagram in Figure 7.

We now claim that this implies that F
(2)
m is equal to P2

m , the square of the
Pfaffian-tree polynomial Pm . Clearly this is true for m = 2 and m = 3, and
the proof consists of showing that P2

m satisfies the same recursion relations as

F
(2)
m . This uses the following two relations (15) and (16) satisfied by Pm itself,

which follow more or less directly from the definition of Pm as the spanning
tree generating function of the complete 3-graph Γm (see [12]).

The first is a contraction-deletion relation

Pm = y123Pm−2(v1 + v2 + v3, v4, . . . , vm) + [Pm]y123=0 . (15)

Here, we have again written the indeterminate yijk as an exterior product
vi ∧ vj ∧ vk . The first term on the right hand side corresponds to the spanning
trees on Γm containing the edge {1, 2, 3}, and the second term to those that
do not. Note that a similar contraction-deletion relation exists for the classical
spanning tree generating function for usual graphs.

The second relation is called Three-term relation in [12]. It states that

Pm(v2 + v3, v4, . . . ) + Pm(v3 + v4, v2, . . . ) + Pm(v2 + v4, v3, . . . ) = 0 (16)

where the dots stand for v5, v6, . . . , vm+2 .

The contraction-deletion relation and the three-term relation imply, by some

algebraic manipulation, that P2
m satisfies the same recursion relations as F

(2)
m .

Thus, although the recognition of the polynomial F
(2)
m as being equal to the

squared spanning tree polynomial P2
m is not quite as immediate from the

Alexander-Conway weight system as the identification of F
(1)
m with the span-

ning tree polynomial Dm in Section 3, it is still quite natural. Indeed, it is based
on the fact that the recursion relations have two natural interpretations, one
coming from the weight system relations in Figure 6, and one coming from the
contraction-deletion relation and the three-term relation for the Pfaffian-tree
polynomial Pm .
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8 Some generalizations to higher Milnor numbers

The polynomial F
(n)
m can be determined explicitly for higher values of n also.

The answer can be expressed in terms of the spanning tree polynonmials Dm or
Pm . One obtains the following result for links with vanishing Milnor numbers
up to a given degree.

Theorem 8.1 [13] Let L be an oriented m-component link with vanish-
ing Milnor numbers of degree p < n and let ∇L(z) =

∑

i≥0 ci(L)zi be its
Alexander-Conway polynomial. Then ci = 0 for i < n(m − 1) and

cn(m−1)(L) =

{

Dm(ℓ
(n)
ij ) , if n is odd

(Pm(µ
(n)
ijk))2 , if n is even,

where ℓ
(n)
ij and µ

(n)
ijk are certain linear combinations of the Milnor numbers of

L of degree n.

Note that if m is even then Pm = 0 and so if n is also even, then the coefficient
cn(m−1)(L) is always zero. In this case the Vanishing Lemma 7.1 leads to an
expression for the next coefficient cn(m−1)+1(L) in terms of a certain polynomial

G
(n)
m . (See Figure 8 for an example of a diagram contributing to G

(2)
4 .)

1 4

2 3

Figure 8: A diagram contributing to G
(2)
4

This polynomial can again be expressed via spanning trees (see [13]).

References

[1] D Bar-Natan, S Garoufalidis. On the Melvin-Morton-Rozansky conjecture,
Invent. Math. 125 (1996) 103–133

[2] B Bollobás, Modern graph theory, Graduate texts in mathematics, 184.
Springer-Verlag (1984)

[3] T Cochran, Concordance invariance of coefficients of Conway’s link polyno-

mial, Invent. Math. 82 (1985) 527–541

Geometry & Topology Monographs, Volume 4 (2002)



214 Gregor Masbaum

[4] JM Figueroa-O’Farrill, T Kimura, A Vaintrob, The universal Vassiliev

invariant for the Lie superalgebra gl(1|1), Comm. Math. Phys. 185 (1997) 93–
127

[5] N Habegger, G Masbaum, The Kontsevich integral and Milnor’s invariants,
Topology, 39 (2000) 1253–1289

[6] R Hartley, The Conway potential function for links, Comment. Math. Hel-
vetici, 58 (1983) 365–378

[7] F Hosokawa, On ∇-polynomials of links, Osaka Math. J. 10 (1958) 273–282.

[8] J Hoste, The first coefficient of the Conway polynomial, Proc. AMS, 95 (1985)
299–302

[9] A Kricker, B Spence, I Aitchison, Cabling the Vassiliev invariants, J. Knot
Theory Ramifications, 6 (1997) 327–358.

[10] J. Levine, The Conway polynomial of an algebraically split link. Knots 96
(Tokyo) 23–29, World Sci. (1997)

[11] J Levine. A factorization of the Conway polynomial, Comment. Math. Helv.
74 (1999) 27–52

[12] G Masbaum, A Vaintrob, A new matrix-tree theorem, Int. Math. Res. Not.
27 (2002) 1397–1426

[13] G Masbaum, A Vaintrob, Milnor numbers, Spanning Trees, and the Alex-

ander-Conway Polynomial, Adv. Math. 180 (2003) 765–797

[14] L Traldi, Milnor’s invariants and the completions of link modules, Trans. Amer.
Math. Soc. 284 (1984) 401–424.

[15] L Traldi, Conway’s potential function and its Taylor series, Kobe J. Math. 5
(1988) 233–263

[16] W T Tutte, Graph theory, Encyclopedia of mathematics and its applications,
21 Addison-Wesley (1984)

[17] A Vaintrob, Melvin-Morton conjecture and primitive Feynman diagrams, In-
ternat. J. Math. 8 (1997) 537–553
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