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A homological definition of the Jones polynomial

Stephen Bigelow

Abstract We give a new definition of the Jones polynomial. Let L be an
oriented knot or link obtained as the plat closure of a braid β ∈ B2n . We
define a covering space C̃ of the space of unordered n-tuples of distinct
points in the 2n-punctured disk. We then describe two n-manifolds S̃ and
T̃ in C̃ , and show that the Jones polynomial of L can be defined as an
intersection pairing between S̃ and βT̃ . Our construction is similar to one
given by Lawrence, but more concrete.
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1 Introduction

The Jones polynomial is most easily defined using skein relations. Consider the
set of formal linear combinations of oriented knots or links in S3 over the ring
Z[q±

1
2 ] modulo the skein relation

q−1L+ − qL− = (q
1
2 − q− 1

2 )L0,

where L+ , L− and L0 are oriented knots or links that are identical except in
a ball, where they are as follows.

L+ =
�
�
��

@@
@@I , L− =

��
���

@
@

@I
, L0 =

�

@I

@

��
.

Using this relation, any oriented knot or link L can be written as some scalar
multiple of the unknot. This scalar VL ∈ Z[q±

1
2 ] is uniquely determined by the

isotopy class of L, and is called the Jones polynomial of L.

The original definition in [3] gives the Jones polynomial of the closure of a braid
as a trace function of the image of that braid in the Hecke algebra. It is natural
to ask whether there is a more topological definition - one which is based not on
algebraic properties of a braid, or combinatorial properties of a projection onto
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30 Stephen Bigelow

the plane, but only on topological properties of the way the link is embedded
into three-dimensional space.

Despite a great deal of effort, no satisfactory answer to this question is known.
A partial answer was provided by the groundbreaking paper of Witten [7],
which gives an interpretation of the Jones polynomial in terms of quantum field
theory. Reshetikhin and Turaev [6] gave a mathematically rigorous formulation
of this theory, using quantum groups instead of the Feynman path integral,
which is not yet known to be well-defined.

In this paper, we follow the approach used by Lawrence in [5]. Let L be the plat
closure of a braid β ∈ B2n . Jones [3] showed that VL appears as an entry of the
matrix for β in a certain irreducible representation of B2n . Lawrence [4] gave a
topological interpretation of this representation. This leads to an interpretation
of VL as an intersection pairing between a certain element of cohomology and
the image under β of a certain element of homology.

The definition of VL given in this paper is essentially the same as Lawrence’s.
However our description of the relevant elements of homology and cohomology
is more explicit. Indeed we explain how one could use them to directly calculate
VL , which is not clear from [4]. We also give a new and more elementary proof
that our invariant is the Jones polynomial.

This interpretation of VL might represent some progress towards a truly topo-
logical definition. However it has a flaw in common with many definitions.
Namely, it is first defined for links in a special form, and then shown to be an
isotopy invariant by checking it is invariant under certain moves. In our case,
the special form is the plat closure of a braid, and the moves are those described
by Birman in [2].

This paper is an attempt to fill in some details of a talk given at a workshop
in RIMS, Kyoto, in September 2001. I thank the organisers for their kind
hospitality. This research was supported by the Australian Research Council.

2 Definitions

Let D be the unit disk centred at 0 in the complex plane. Let p1, . . . , p2n be
points on the real line such that

−1 < p1 < . . . < p2n < 1.

Call these puncture points. Let

D2n = D \ {p1, . . . , p2n}.
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The braid group B2n is the mapping class group of D2n . We will also use other
equivalent definitions of B2n as a group of geometric braids, as the fundamental
group of a configuration space of points in the plane, and as given by generators
and relations. For these and more, see [1]. We use the convention that braids
act on D2n on the left, and geometric braids read from top to bottom.

Let C̄ be the set of ordered n-tuples of distinct points in D2n . Let C be the
quotient of C̄ by the symmetric group Sn , that is, the set of unordered n-tuples
of distinct points in D2n . We now define a homomorphism

Φ: π1C → 〈q〉 ⊕ 〈t〉.
The motivation for our definition is the fact, which we will not prove, that it
has a certain universal property. Namely, any map from π1C to an abelian
group which is invariant under the action of B2n must factor uniquely through
Φ.

Let α: I → C be a loop in C . By ignoring the puncture points we can consider
α as a loop of unordered n-tuples in the disk, and hence as a braid in Bn . Let
b be the image of this braid under the usual abelianisation map from Bn to Z,
which takes each of the the standard generators to 1. Similarly, the map

s 7→ {p1, . . . , p2n} ∪ α(s)

determines a braid in B3n . Let b′ be the image of this braid under the usual
abelianisation map from B3n to Z. Note that b and b′ have the same parity,
equal to the parity of the image of the braid α in the symmetric group Sn . Let
a = 1

2(b′ − b). We define
Φ(α) = qatb.

This definition was intended to be easy to state and clearly well-defined, but
it is also somewhat artificial. A more intuitive definition is as follows. A loop
α: I → C can be written as

α(s) = {α1(s), . . . , αn(s)}
for some arcs α1, . . . , αn in D2n . The exponent of q in Φ(α) records the total
winding number of these arcs around the puncture points. The exponent of
t records twice the winding number of these arcs around each other. Thus if
two arcs switch places by a counterclockwise half twist then this contributes a
factor of t.

Let C̃ be the covering space of C corresponding to Φ. The group of covering
transformations of C̃ is 〈q〉 ⊕ 〈t〉. We define the following intersection pairing
in C̃ .
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32 Stephen Bigelow

Definition 2.1 Suppose A and B are immersed n-manifolds in C such that
at least one of them is closed, and the other intersects every compact subset
of C in a compact set. Suppose Ã and B̃ are lifts of A and B respectively
to C̃ . For any a, b ∈ Z[q±1, t±1] let qatbÃ be the image of Ã under the cover-
ing transformation qatb . There is a well-defined algebraic intersection number
(qatbÃ, B̃) ∈ Z. We define

〈Ã, B̃〉 =
∑
a,b∈Z

(qatbÃ, B̃)qatb ∈ Z[q±1, t±1].

This is a finite sum, since the number of nonzero terms is at most the geometric
intersection number of A and B in C .

To specify an n-manifold C̃ , it will help to have a fixed basepoint.

Definition 2.2 Let d1, . . . , dn be distinct points on ∂D . We take them to lie
in the lower half plane, ordered from left to right. Let c = {d1, . . . , dn} and fix
a choice of c̃ ∈ C̃ in the fibre over c.

We now define a certain type of picture in the disk which we will use to represent
an immersed n-manifold in C̃ .

Definition 2.3 A fork diagram in D2n consists of maps

E1, . . . , En: I → D

called tine edges, and maps

E′1, . . . , E
′
n: I → D

called handles, subject to the following conditions.

• the tine edges are disjoint embeddings of the interior of I into D2n , and
map the endpoints of I to the puncture points in D (not necessarily
injectively),

• the handles are disjoint embeddings of I into D2n ,

• E′i is a path from di to a point in the interior of Ei .

Such a fork diagram determines an immersed open n-ball Ũ in C̃ as follows.
Note that E1× . . .×En maps the interior of I × . . .× I into C̄ . Now let U be
the projection of this map to C . Let γ be the path in C given by

γ(s) = {E′1(s), . . . , E′n(s)}.
Lift this to a path γ̃ in C̃ starting at c̃. We define Ũ to be the lift of U which
contains γ̃(1). This is an oriented open n-ball in C̃ .
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Figure 1: The standard fork diagram for n = 3
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Figure 2: The figure eight Fi corresponding to Ei

Definition 2.4 Let S̃ denote the open n-ball in C̃ corresponding to the stan-
dard fork diagram shown in Figure 1, where all tine edges are oriented from left
to right.

Definition 2.5 For each tine edge Ei in the standard fork diagram, let Fi be
the map from S1 to the figure-eight as shown in Figure 2. Then F1 × . . .× Fn
is an immersion from the n-torus into C̄ . Let T be the projection of this map
into C . Use the handles to specify a lift T̃ of T to C̃ , as in the definition of S̃ .

If [β] ∈ B2n , let β be a homeomorphism from D2n to itself that represents the
mapping class [β]. Let β′ be the induced map from C to itself. This can be
lifted to a map from C̃ to itself. Let β̃′ be the lift of β′ which fixes c̃. By
abuse of notation we will use β to denote [β], β′ and β̃′ .

Definition 2.6 An oriented braid is a braid β ∈ B2n together with a choice
of orientation for each of the 2n strands such that the orientations match up
correctly when we take the plat closure of β .

We now define our invariant V ′β of an oriented braid β ∈ B2n .
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34 Stephen Bigelow

Definition 2.7 Suppose β ∈ B2n is an oriented braid. Let w be the writhe
of β , that is, the number of right handed crossings minus the number of left
handed crossings. Let e be the sum of the exponents of the generators in any
word representing β . Let

λ = (−q 1
2 − q− 1

2 )−1(−q 3
4 )w(q−

1
4 )e+2n.

Then we define
V ′β = λ〈S̃, βT̃ 〉|(t=−q−1).

The main result of this paper is the following.

Theorem 2.8 V ′β is the Jones polynomial of the plat closure of β .

Note that the simpler formula

q−
1
4

(e+2n)〈S̃, βT̃ 〉|(t=−q−1)

therefore gives the Kauffman bracket of the plat closure of β , normalised to
equal one for the empty diagram.

3 How to compute the invariant

In this section, we describe of how one could compute 〈S̃, βT̃ 〉, and hence V ′β .

Let E1, . . . , En and E′1, . . . , E
′
n be the tine edges and handles of the standard

fork diagram. Let F1, . . . , Fn be the corresponding figure-eights as in Figure
2. By applying an isotopy, we can assume that each βFi and Ej intersect
transversely and there are no triple points.

The intersection S ∩ βT consists of points e = {e1, . . . , en} in C such that
ei ∈ Ei ∩ Fπi for some permutation π of {1, . . . , n}. Each such e contributes
a monomial ±qatb to 〈S̃, βT̃ 〉. The sign of this monomial is the sign of the
intersection of S with βT at e. Let ẽ be the lift of e which lies in S̃ . The
integers a and b are such that qatbẽ lies in βT̃ . The sum of these terms ±qatb
over all e in S ∩ βT is the required polynomial 〈S̃, βT̃ 〉.

We now describe how to compute the monomial for a given e as above. Let m
be the number of points ei such that the sign of the intersection of Ei with Fπi
at ei is negative. The sign of our required monomial is then (−1)m times the
parity of the permutation π .
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Let h be the path
h(s) = {E′1(s), . . . , E′n(s)}

in C . Let ε be the path

ε(s) = {ε1(s), . . . , εn(s)},

where εi is a segment of Ei going from E′i(1) to ei . Then the composition hε
lifts to a path from c̃ to ẽ. Let φ be the path

φ(s) = {φ1(s), . . . , φn(s)},

where φi is a segment of βFπi going from βE′πi(1) to ei . Then the composition
β(h)φ lifts to a path from c̃ to qatbẽ. Recall that qatbẽ ∈ βT̃ . We conclude
that the path

δ = β(h)φε−1h−1

lifts to a path from c̃ to qatbc̃. Thus

qatb = Φ(δ).

It is possible to calculate the Jones polynomial of a knot or link by these meth-
ods. Given a knot diagram, replace every sequence of consecutive undercross-
ings with a figure-eight. Attach handles in any convenient fashion and proceed
as described above. Then either compute the correct factor λ, or simply settle
for the value of the Jones polynomial up to sign and multiplication by a power
of q

1
2 . I have performed this calculation by hand for the unknot, the Hopf link,

and the trefoil knot. Even for the trefoil, it was necessary to correct several
mistakes before reaching the correct answer. A computer implementation would
be more reliable, but probably no more efficient than existing methods.

4 Lemmas

The pairing 〈·, ·〉 is really a pairing between Hn(C̃) and Hn(C̃). These coho-
mology and homology groups are modules over Z[q±1, t±1], where q and t act
by covering transformations. The open n-ball corresponding to a fork diagram
represents an element of Hn(C̃). We can thus extend the algebraic pairing to
take linear combinations of fork diagrams in its first entry. We now prove some
relations that hold between fork diagrams considered as elements of HnC̃ .

Lemma 4.1 The following relations hold.
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(1) - = − �

(2) = −t

(3) s
�
�
�
�
�
�

= q s
D
D
D
D
D
D

(4) s = s
A
A
A
A

+ s
�
�
�
�

.

Here, the diagrams in each relation are understood to be identical except in the
disk shown. The disks shown are also allowed to contain an arbitrary number of
additional tine edges, which are required to be identical for all diagrams in the
relation. All tine edges are oriented in any consistent fashion except in relation
(1).

Proof of Lemma 4.1 In the first three relations, the tine edges are the same
in both sides of the equation. Thus the corresponding open n-balls are lifts of
the same open n-ball in C , possibly with different orientations.

To determine the orientation, recall that the open n-ball in C was defined as
the product T1× . . .×Tn of tine edges, where Ti is the tine edge whose handle
is attached to di . Thus the orientation is determined by the orientations of
the tine edges and the order in which they occur. In the first relation, the
orientation of one tine edge was reversed. In the second, the order in which
they occur underwent a transposition. In the third, there was no change to the
order or orientation of the tine edges. Thus the signs are as claimed in these
relations.

The choice of lift is determined by the handles. In the first relation, the handles
are unchanged. In the second and third, the changes in the handles correspond
to the scalars t and q as given.
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The final relation describes the process of cutting the open n-ball along a
hyperplane by pushing that hyperplane into a puncture point.

One useful consequence of these relations is the following relation. (Thanks to
Saul Schleimer for suggesting the name.)

Lemma 4.2 (The fork-spoon relation) Modulo (1 + qt), we have

s s s s
-

= (1− q−1) s s s s ,
where the horizontal tine edges are oriented left to right.

5 Proof of the main theorem

Throughout this section we use the conventions that t = −q−1 , and the hori-
zontal tine edges in any fork diagram are oriented from left to right.

Let β be an oriented braid and let L be the plat closure of β . The aim of this
section is to prove Theorem 2.8, that V ′β = VL . First we prove that V ′β depends
only on the isotopy class of L. We use a result due to Birman which gives the
“Markov moves” for plat closures.

Definition 5.1 Let K2n be the subgroup of B2n generated by

• σ1 ,

• σ2σ
2
1σ2 ,

• σ2iσ2i−1σ2i+1σ2i for i = 1, . . . , n − 1,

where σ1, . . . , σ2n−1 are the standard generators of B2n .

Lemma 5.2 (Birman) Two oriented braids β1 ∈ B2n1 and β2 ∈ B2n2 have
isotopic plat closures if and only if they are related by a finite sequence of the
following moves.

• β 7→ gβh, where β ∈ B2n and g, h ∈ K2n .

• β ↔ σ2nβ , where β ∈ B2n and σ2nβ ∈ B2n+2 .
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38 Stephen Bigelow

The move β 7→ σ2nβ ∈ B2n+2 is called stabilisation.

Our statement of Lemma 5.2 differs from that of [2] in two respects. First,
Birman’s result applies only to knots. This was necessary in order to show that
the two types of move commute. We do not need the moves to commute, so we
can apply Birman’s proof to the case of links.

Second, Birman did not consider the issue of orientation. There is a small
technical point here. Our statement of the lemma should really specify the
effect of each move on the orientation of the braid. However since each move
corresponds to an isotopy of the plat closure, it is clear what this effect should
be. With this in mind, Birman’s proof goes through unchanged.

Lemma 5.3 If β ∈ B2n is an oriented braid and g ∈ K2n then V ′gβ = V ′β .

Proof It suffices to prove this in the case g is one of the generators of K2n .

Recall that the coefficient in the definition of V ′β is

λ = (−q 1
2 − q− 1

2 )−1(−q 3
4 )w(q−

1
4 )e+2n,

where w and e are respectively the writhe and exponent sum of β . Now σ1

contributes a left-handed crossing to σ1β , so the writhe of σ1β is w − 1. For
all other generators, gβ has writhe w . Thus we must show that

δ〈S̃, gβT̃ 〉 = 〈S̃, βT̃ 〉,
where δ is −q−1 for g = σ1 , and q−1 for all other generators. We can rewrite
this as

〈δ−1S̃, gβT̃ 〉 = 〈gS̃, gβT̃ 〉.
Thus it suffices to prove the identities

gS̃ = δ−1S̃.

In the cases g = σ1 and g = σ2iσ2i−1σ2i+1σ2i , this follows easily from Lemma
4.1. In the case g = σ2σ

2
1σ2 , it helps to first use the fork-spoon relation.

Lemma 5.4 If β ∈ B2n is an oriented braid and h ∈ K2n then V ′βh = V ′β .

Proof Note that T̃ can be isotoped to be equal to (1 − q)nS̃ except in an
arbitrarily small neighbourhood of the puncture points. Thus

〈S̃, βT̃ 〉 = (1− q)−n〈T̃ , βT̃ 〉
= (1− q)−n〈β−1T̃ , T̃ 〉
= 〈β−1T̃ , S̃〉.
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Similarly
〈S̃, βhT̃ 〉 = 〈β−1T̃ , hS̃〉.

The result now follows from the proof of the previous lemma.

Before we move on to stabilisation, we prove the following special case of the
skein relation.

Lemma 5.5 Let β ∈ B2n be an oriented braid. Suppose the strands second
and third from the right at the top have a parallel orientation. Let β+ = σ2n−2β
and β− = σ−1

2n−2β . Then

q−1V ′β+
− qV ′β− = (q

1
2 − q− 1

2 )V ′β.

Proof If the writhe of β is w then the writhe of β+ is w + 1 and the writhe
of β− is w − 1. A simple calculation reduces the problem to showing that

(σ2n−2 − 1)(σ2n−2 + q)S̃ = 0.

By the fork-spoon lemma, this is equivalent to

(σ2n−2 − 1)(σ2n−2 + q) s s s s
-

= 0,

where we have shown only a disk containing the puncture points p2n−3, . . . , p2n .
To simplify notation, assume that n = 2 and show only a disk containing p1 ,
p2 and p3 . This reduces the problem to showing that

(σ2 − 1)(σ2 + q) s s s
C
C
C
C

= 0.

By Lemma 4.1,

(σ2 − 1) s s s
C
C
C
C

= s s s
�
�
�
�

,
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and

(σ2 + q) s s s
�
�
�
�

= 0.

This completes the proof.

Lemma 5.6 Suppose β ∈ B2n is an oriented braid. Let β′+ = σ2nβ ∈ B2n+2 .
Then V ′β′+

= V ′β .

Proof Let β′ be the image of β in B2n+2 . Note that β′+ = σ2nβ
′ . Let

β′− = σ−1
2n β

′ . Then
β′+σ

2
2n+1 = σ2nσ

2
2n+1σ2nβ

′
−.

One can show that σ2n+1 and σ2nσ
2
2n+1σ2n lie in K2n+1 . By Lemmas 5.3 and

5.4, it follows that
V ′β′+

= V ′β′−
.

By Lemma 5.5,
q−1V ′β′+

− qVβ′− = (q
1
2 − q− 1

2 )V ′β′ .

Thus
(−q 1

2 − q− 1
2 )V ′β′+ = V ′β′ .

To show that V ′β′+ = V ′β , it therefore suffices to show that

V ′β′ = (−q 1
2 − q− 1

2 )V ′β.

Note that β and β′ have the same writhe w , and the same exponent sum e,
but have 2n and 2n + 2 strands respectively. Thus coefficient λ used in the
computation of V ′β′ is q−

1
2 times that of V ′β . The problem is therefore reduced

to showing that
〈S̃′, βT̃ ′〉 = (−1− q)〈S̃, βT̃ 〉,

where S̃′ is the open (n + 1)-ball corresponding to the standard fork diagram
in D2n+2 , and T̃ ′ is the corresponding (n+ 1)-torus.

Now S̃′ is the product of S̃ with an edge, and T̃ ′ is the product of T̃ with a
circle. This edge meets this circle at two points in the disk. These two points
contribute −1 and −q times 〈S̃, βT̃ 〉. To see this, consider the computation of
the pairing described in Section 3.
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We have shown that V ′β is invariant under each of the moves in 5.2. Thus it is
an isotopy invariant of the plat closure L of β .

We now prove the skein relation given in Section 1. Let L+ , L− and L0 be
as defined there. Since V ′ is an isotopy invariant, we are free to choose any
representation of these links as plat closures of a braid. In particular, we can
move the ball on which the three links differ to the top right of the diagram.
Then we can isotope the rest of the diagram to be a plat closure. Thus we can
reduce to the case which was already proved in Lemma 5.5.

Finally, a direct computation as described in Section 3 verifies that our invariant
of the unknot is one. This completes the proof that V ′β is the Jones polynomial
of the plat closure of β .
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