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4. Drinfeld modules and
local fields of positive characteristic

Ernst—Ulrich Gekeler

The relationship between local fields and Drinfeld modules is twofold. Drinfeld mod-
ules allow explicit construction of abelian and nonabelian extensions with prescribed
properties of local and global fields of positive characteristic. On the other hand,
n-dimensional local fields arise in the construction of (the compactification of) mod-
uli schemes X for Drinfeld modules, such schemes being provided with a natural
dtratification Xg € X1 C --- X;--- C X,, = X through smooth subvarieties X; of
dimension .

We will survey that correspondence, but refer to the literature for detailed proofs
(provided these exist so far). An important remark is in order: The contents of this
articletakeplacein characteristic p > 0, and arein fact locked up in the characteristic p
world. No lift to characteristic zero nor even to schemes over Z/p? is known!

4.1. Drinfeld modules

Let L be afield of characteristic p containing the field F,, and denote by 7 = 7,
raising to the ¢th power map = — z9. If “a” denotes multiplication by a € L, then
Ta = a?r. Thering End(G, ) of endomorphisms of the additive group G, ,;, equals
L{rp} = {X_a;7} : a; € L}, the non-commutative polynomial ring in 7, = (z — x*)
with the above commutation rule 7,a = a”7. Similarly, the subring Endr, (G, /) of
[F,-endomorphismsis L{7} with 7 =7} if ¢ =p". Notethat L{r} isan I -algebra
since F, — L{r} iscentral.

Definition 1. Let € beasmooth geometrically connected projectivecurveover I, Fix

aclosed (but not necessarily F,-rational) point oo of €. Thering A =T (C—{oc}, O¢)
iscalled aDrinfeld ring. Notethat A* =T .
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240 E.-U. Gekeler

Examplel. If € istheprojectiveline Pl/]Fq and oo istheusual point at infinity then
A=F,[T].

Example 2. Supposethat p 7 2, that € is given by an affine equation Y2 = f(X)
with a separable polynomial f(X) of even positive degree with leading coefficient a
non-square in F,, and that oo isthe point above X = co. Then A =T, [X,Y] isa
Drinfeld ring with dequ (<) = 2.

Definition 2. An A-structure on a field L is a homomorphism of F,-algebras (in
brief: an F,-ring homomorphism) v: A — L. Its A-characteristic char,(L) isthe
maximal ideal ker(v), if ~ failsto beinjective, and co otherwise. A Drinfeld module
structureon such afield L isgiven by an IF,-ring homomorphism ¢: A — L{7} such
that 0 o ¢ = v, where 9: L{r} — L isthe L-homomorphism sending 7 to 0.

Denote ¢(a) by ¢, € Endr, (G./r); ¢. induces on the additive group over L
(and on each L-algebra M) anew structure asan A-module:

(4.1.1) axx:=¢u(x) (a€ A xeM).
We briefly call ¢ aDrinfeld module over L, usually omitting referenceto A.

Definition 3. Let ¢ and v beDrinfeld modulesover the A-field L. A homomorphism
u:¢ — 1 isan element of L{r} suchthat wo ¢, = ¢, ou foral a € A. Hence
an endomorphismof ¢ isan element of the centralizer of ¢(A4) in L{7r}, and u isan
isomorphismif v € L* — L{7} issubjectto uo ¢, = ¥, o u.

Define deg: « — ZU{—oc} and deg,: L{r} — ZU{—o0o} by deg(a) =log, |A/al
(a #0; wewrite A/a for A/aA), deg(0) = —oo, and deg.(f) = the well defined
degreeof f asa“polynomia” in 7. Itisan easy exercisein Dedekind rings to prove
the following

Proposition 1. If ¢ isa Drinfeld module over L, there exists a non-negativeinteger r
such that deg. (¢,) = deg(a) for all a € A; r iscaled therank rk(¢) of ¢.

Obviously, rk(¢) = 0 meansthat ¢ =+, i.e, the A-module structureon G, /. is
the tautological one.

Definition 4. Denoteby M"(1)(L) the set of isomorphism classes of Drinfeld modules
of rank r over L.

Example3. Let A =T,[T] beasin Example1landlet K = [F,(T") beits fraction
field. DefiningaDrinfeld module ¢ over K or anextensionfield L of K isequivalent
to specifying ¢ =T + g17 +--- + g.7" € L{T}, where g, Z 0 and r = rk(¢). In
the special casewhere ¢ =T + 7, ¢ iscalled the Carlitz module. Two such Drinfeld
modules ¢ and ¢’ are isomorphic over the algebraic closure L39 of L if and only if
thereissome u € LA9" suchthat ¢} = u¢ ~1g; foral i > 1. Hence M"(1)(L39) can
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Part 1. Section 4. Drinfeld modules and local fields of positive characteristic 241

be described (for » > 1) asan open dense subvariety of aweighted projective space of
dimension ~ — 1 over L39,

4.2. Division points

Definition 5. For a € A andaDrinfeld module ¢ over L, write ,¢ for the subscheme
of a-division points of G, ,;, endowed with its structure of an A-module. Thus for
any L-algebra M,

(M) ={x € M: ¢o(x) = 0}.
More generally, we put ¢ = () ¢, for an arbitrary (not necessarily principal) ideal

aca

a of A. Itisafiniteflat group scheme of degree rk(¢) - deg(a), whose structure is
described in the next result.

Proposition 2 ([Dr], [DH, I, Thm. 3.3 and Remark 3.4]). Let the Drinfeld module ¢

over L haverank r > 1.

(i) If chara(L) = 0o, ¢ isreduced for eachideal a of A, and (L) = ,(LA9)
isisomorphic with (A/a)" asan A-module.

(if) If p =chars(L) isamaximal ideal, then thereexistsaninteger h, the height ht(¢)
of ¢, satisfying 1 < h < r, and suchthat ,¢(L3¥9) ~ (A/a)"~" whenever a isa
power of p, and (LA9) ~ (A/a)" if (a,p) = 1.

The absolute Galoisgroup G of L actson ,¢(L%) through A-linear automor-
phisms. Therefore, any Drinfeld module gives rise to Galois representations on its
division points. These representations tend to be “as large as possible”.

The prototype of result is the following theorem, due to Carlitz and Hayes [H1].

Theorem 1. Let A be the polynomial ring [F,[7] with field of fractions K. Let

p:A — K{r} be the Carlitz module, pr = T + 7. For any non-constant monic

polynomial a € A, let K(a) := K(,p(K39)) be the field extension generated by the

a-division points.

(i) K(a)/K isabelianwithgroup (A/a)*. If o} isthe automorphism corresponding
to theresidueclassof b mod a and = € ,p(K39) then o (x) = py(x).

(i) If (a) = p* is primary with some prime ideal p then K(a)/K is completely
ramified at p and unramified at the other finite primes.

(iii) If (@) = JJa; (1 < i < s) with primary and mutually coprime a;, the fields
K(a;) aremutually linearly digoint and K = ®;<;<sK (a;).

(iv) Let K.(a) be the fixed field of Fy — (A/a)*. Then oo is completely split in
K4(a)/K and completely ramified in K (a)/K+(a).

(v) Let p beaprimeideal generated by the monic polynomial = € A and coprime
with a. Under the identification Gal(K (a)/K) = (A/a)*, the Frobenius element
Frob,, equalsthe residueclassof 7 mod a.
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242 E.-U. Gekeler

Letting a — oo with respect to divisibility, we obtain the field K (co) generated
over K by all the division points of p, with group Gal(K (o0)/K) = Ii_nga (A/a)*,
which almost agreeswith the group of finiteidele classesof K. Itturnsout that K (co)
is the maximal abelian extension of K that is tamely ramified at oo, i.e., we get a
constructive version of the class field theory of K. Hence the theorem may be seen
both as a global variant of Lubin-Tate's theory and as an analogue in characteristic p
of the Kronecker—Weber theorem on cyclotomic extensions of Q.

There are vast generalizations into two directions:

(a) abelian class field theory of arbitrary global function fields K = Frac(A), where
A isaDrinfeld ring.
(b) systems of nonabelian Galois representations derived from Drinfeld modules.

Asto (@), the first problem is to find the proper analogue of the Carlitz module for
an arbitrary Drinfeld ring A. Aswill result e.g. from Theorem 2 (see also (4.3.4)),
the isomorphism classes of rank-one Drinfeld modules over the algebraic closure ka9
of K correspond bijectively to the (finite!) class group Pic(A) of A. Moreover,
these Drinfeld modules p(® (a € Pic(A)) may be defined with coefficientsin the ring
Oy, of A-integersof acertain abelian extension H, of K, and such that the leading
coefficients of all p{®) areunitsof Oy, . Using these data along with the identification
of Hy inthedictionary of classfield theory yields ageneralization of Theorem 1 to the
case of arbitrary A. In particular, we again find an explicit construction of the class
fieldsof K (subject to atamenesscondition at oo ). However, in view of class number
problems, the theory (due to D. Hayes [H2], and superbly presented in [Go2, Ch.VI1])
has more of the flavour of complex multiplication theory than of classical cyclotomic
theory.

Generalization (b) isasfollows. Supposethat L isafiniteextensionof K = Frac(A),
where A isagenera Drinfeld ring, and let the Drinfeld module ¢ over L haverank r.
For each power p* of aprime p of A, G = Gal(L%P/L) actson ,:¢ ~ (A/p")". We
thus get an action of G, on the p-adic Tate module T},(¢) ~ (A,)" of ¢ (see[DH, |
sect. 4]. Here of course A, = m A/pt isthe p-adic completion of A with field of
fractions K. Let on the other hand End(¢) be the endomorphism ring of ¢, which
also actson T,(¢). Itisstraightforward to show that (i) End(¢) actsfaithfully and (ii)
the two actions commute. In other words, we get an inclusion

(4.2.1) i:End(¢) ©a Ap — Endg, (T5(4))

of finitely generated free A,-modules. The plain analogue of the classical Tate con-
jecture for abelian varieties, proved 1983 by Faltings, suggests that 7 is in fact bijec-
tive. This has been shown by Taguchi [Tag] and Tamagawa. Teking End(7}(¢)) ~
Mat(r, A,) and the known structure of subalgebras of matrix algebras over afield into
account, this means that the subalgebra

Kp[GL] — End(T,(¢) ®4, K,) =~ Mat(r, K)
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Part I1. Section 4. Drinfeld modules and local fields of positive characteristic 243

generated by the Galois operatorsis as large as possible. A much stronger statement is
obtained by R. Pink [P1, Thm. 0.2], who shows that the image of G, in Aut(T,(¢))
has finite index in the centralizer group of End(¢) ® A,. Henceif eg. ¢ has no
“complex multiplications’ over L39 (i.e., End,ag(¢) = A; thisis the generic case
for a Drinfeld module in characteristic oc), then the image of G hasfinite index in
Aut(T,(¢9)) ~ GL(r,Ay). Thisis quite satisfactory, on the one hand, since we may
use the Drinfeld module ¢ to construct large nonabelian Galois extensions of L with
prescribed ramification properties. On the other hand, the important (and difficult)
problem of estimating the index in question remains.

4.3. Welerstrasstheory

Let A beaDrinfeld ring with field of fractions K, whose completion at oo isdenoted
by K... Wenormalizethe corresponding absolutevalue | | =| | as |a| =|A/al for
0#a € A andlet C., bethecompleted algebraic closureof K., i.e., the completion
of the algebraic closure Kglog with respect to the unique extension of | | to K?'og.
By Krasner's theorem, C, is again algebraicaly closed ([BGS, p. 146], where aso
other facts on function theory in C, may be found). It is customary to indicate the
strong analogiesbetween A, K, K., Co,... and Z,Q,R,C, ..., eg. A isadiscrete
and cocompact subring of K ... But note that C, failsto be locally compact since
|Coo : Koo| = 00.

Definition 6. A lattice of rank » (an r-lattice in brief) in C,, isafinitely generated
(hence projective) discrete A-submodule A of C,, of projective rank r, where the
discreteness means that A has finite intersection with each ball in C.,. The lattice
function ep: Co — Coo of A isdefined asthe product

(4.3.1) en(z) =z [ @—2/N.
0ANEN

It is entire (defined through an everywhere convergent power series), A-periodic and
IF,-linear. For anon-zero a € A consider the diagram

0 A Co —2 5 Cy —— 0
(4.3.2) al al ¢gl
0 A Co —2 5 Cy —— 0

with exact lines, where the left and middle arrows are multiplications by a and ¢/ is
defined through commuitativity. It is easy to verify that

(i) o) € Cx{r},
(i) deg (¢7) =1 - deg(a),

Geometry & Topology Monographs, Volume 3 (2000) — Invitation to higher local fields



244 E.-U. Gekeler

(iii) a — ¢ isaring homomorphism ¢": A — C..{r}, in fact, a Drinfeld module
of rank r. Moreover, al the Drinfeld modules over (', are so obtained.

Theorem 2 (Drinfeld [Dr, Prop. 3.1]).

(i) Eachrank-r Drinfeldmodule ¢ over C., comesvia A — ¢ fromsome r-lattice
Ain Cy.

(ii) Two Drinfeld modules ¢”, ¢ areisomorphic if and only if there exists 0 # ¢ €
Cs suchthat A" =c-A.

We may thus describe M"(1)(C) (see Definition 4) as the space of r-lattices
modulo similarities, i.e., as some generalized upper half-plane modulo the action of an
arithmetic group. Let us make this more precise.

Definition 7. For r > 1 let P"~1(C..) bethe C., -pointsof projective r — 1-spaceand
Q" =P YC) — UH(Cx), where H runs through the K -rational hyperplanes
of P!, Thatis, w = (w1 :...:w,) belongsto Drinfeld's half-plane Q" if and only
if thereis no non-trivial relation ) a;w; = 0 with coefficients a; € K.

Both point sets P"~1(C.,) and Q" carry structures of analytic spaces over C
(even over K, ), and so we can speak of holomorphic functionson Q". We will not
give the details (see for example [GPRV, in particular lecture 6]); sufficeit to say that
locally uniform limits of rational functions (e.g. Eisenstein series, see below) will be
holomorphic.

Suppose for the moment that the class number h(A) = |Pic(4)] of A equals
one, i.e, A is a principal ideal domain. Then each r-lattice A in C., is free,
A =3 1cic, Awi, and the discreteness of A is equivalent with w = (w1 @ ... @ wy)
belongingto Q" — P"~1(C..). Further, two points w and w’ describe similar lattices
(and therefore isomorphic Drinfeld modules) if and only if they are conjugate under
I := GL(r, A), which acts on P"~1(C..) and its subspace Q". Therefore, we get a
canonical bijection

(4.3.3) M Q" =M"(1)(Cx)

from the quotient space ' \ Q" to the set of isomorphism classes M"(1)(C)-

Inthe general caseof arbitrary h(A) € N, welet I'; .= GL(Y;) — GL(r, k), where
Y; — K" (1 < i < h(A)) runs through representatives of the h(A) isomorphism
classes of projective A-modules of rank r. In a similar fashion (see e.g. [G1, Il
sect.1], [G3]), we get a bijection

(4.3.4) M\ Q" =M"(1)(Cx),

Ulgz‘gh(A)

which can be made independent of choicesif we use the canonical adelic description of
the Y;.
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Part I1. Section 4. Drinfeld modules and local fields of positive characteristic 245

Example 4. If r = 2 then Q = Q? = P}(C) — —PY(K ) = Cx — K., Which
rather correspondsto C — R = H* | J H~ (upper and lower complex half-planes) than
to H* done. Thegroup I' := GL(2,A) actsvia (“5)(z) = 2, and thus gives
rise to Drinfeld modular formson Q (see [G1]). Suppose moreover that A = F,[T]
as in Examples 1 and 3. We define ad hoc a modular form of weight k£ for ' asa

holomorphic function f: Q — C,, that satisfies
() f(22) =(cz+d)*f(2) for (“°) €T and

cz+d

(i) f(z) isbounded onthesubspace {z € Q :inf,ck_ |z — x| > 1} of Q.

Further, weput M; forthe C, -vector space of modular formsof weight k. (Inthe
special case under consideration, (ii) is equivalent to the usual “holomorphy at cusps’
condition. For more general groups I, e.g. congruence subgroups of GL(2, A),
general Drinfeld rings A, and higher ranks r > 2, condition (ii) is considerably more
costly to state, see[G1].) Let

(4.3.5) E(2) = > 1

k
00 TeAxa @2 F0)

be the Eisenstein series of weight k. Due to the non-archimedean situation, the sum
converges for k£ > 1 and yields a modular form 0 # E, € M, if Kk = 0 (¢ — 1).
Moreover, the various M, arelinearly independent and

(4.3.6) M) = P My = Coo[Ey1, Ep2_q]
k>0

is a polynomial ring in the two algebraically independent Eisenstein series of weights
g—1 and ¢?2—1. Thereisanapriori different method of constructing modular formsvia
Drinfeld modules. With each z € Q, associate the 2-lattice A, .= A2+ A — C, and
the Drinfeld module ¢2) = ¢-). Writing ¢ = T + g(2)7 + A(z)72, the coefficients
g and A become functionsin z, in fact, modular forms of respective weights ¢ — 1
and ¢2 — 1. Wehave ([Go1], [G1, Il 2.10])

2 2
(437) 9= = T)E,_1,: A= (7 —T)Ep 1 +(T7 — THE™,.

The crucia fact is that A(z) # 0 for z € Q, but A vanishes “at infinity”. Letting
§(2) = g(2)7™ /A(z) (whichisafunction on Q invariant under I'), the considerations
of Example 3 show that j is a complete invariant for Drinfeld modules of rank two.
Therefore, the composite map

(4.3.8) FiT\ QS MP(1)(Cos) = Coe

is bijective, in fact, biholomorphic.
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4.4, Moduli schemes

We want to give a similar description of M"(1)(C) for » > 2 and arbitrary A, that
is, to convert (4.3.4) into an isomorphism of analytic spaces. One proceeds as follows
(see[Dr], [DH], [G3]):

(a) Generalize the notion of “Drinfeld A-module over an A-field L” to “Drinfeld
A-module over an A-scheme S — Spec A”. Thisisquite straightforward. Intuitively,
a Drinfeld module over S is a continuously varying family of Drinfeld modules over
theresiduefieldsof S.

(b) Consider the functor on A-schemes:

isomorphism classes of rank-r
M S —

Drinfeld modules over S

The naive initial question is to represent this functor by an S-scheme M7 (1). Thisis
impossible in view of the existence of automorphisms of Drinfeld modules even over
algebraically closed A-fields.

(c) As aremedy, introduce rigidifying level structures on Drinfeld modules. Fix some
ideal 0 #n of A. An n-level structure on the Drinfeld module ¢ over the A-field L
whose A-characteristic doesn’t divide n isthe choice of anisomorphismof A-modules

a:(A/n)" = wo(L)

(compare Proposition 2). Appropriate modifications apply to the caseswhere char 4 (L)
divides n and where the definition field L isreplaced by an A-scheme S. Let M"(n)
be the functor

isomorphism classes of rank-r
M"(n): S —— < Drinfeld modules over S endowed
with an n-level structure

Theorem 3 (Drinfeld [Dr, Cor. to Prop. 5.4]). Suppose that n is divisible by at least
two different prime ideals. Then M"(n) is representable by a smooth affine A-scheme
M"(n) of relativedimension r — 1.

In other words, the scheme M™(n) carries a “tautological” Drinfeld module ¢ of
rank r endowedwith alevel- n structuresuch that pull-back inducesfor each A-scheme
S abijection

(44.1)  M"(n)(S) = {morphisms (S, M"(n))} =M " (n)(S), fr— f*(¢).

M"(n) iscalledthe (fine) moduli schemefor the moduli problem M"(n). Now thefinite
group G(n) := GL(r, A/n) actson M"(n) by permutations of the level structures. By
functoriality, it also actson M"(n). Welet M7 (1) bethe quotient of M"(n) by G(n)
(which does not depend onthe choiceof n). It hasthe property that at least its L-valued
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Part 1. Section 4. Drinfeld modules and local fields of positive characteristic 247

points for algebraically closed A-fields L correspond bijectively and functorialy to
M"(1)(L). Itistherefore called a coarse moduli scheme for M"(1). Combining the
above with (4.3.4) yields a bijection

(4.4.2) MH\Q = M'(1)(Cx),

Ulgigh(A)

which even is an isomorphism of the underlying analytic spaces [Dr, Prop. 6.6]. The
most simple special caseis the one dealt with in Example 4, where M%(1) = Al 4, the
affineline over A.

4.5. Compactification

It is a fundamental question to construct and study a “compactification” of the affine
A-scheme M"(n), relevant for example for the Langlands conjectures over K, the
cohomology of arithmetic subgroups of GL(r, A), or the K-theory of A and K.
This means that we are seeking a proper A-scheme M7 (n) with an A-embedding
M7 (n) — M"(n) asan open dense subscheme, and which behaves functorially with
respect to the forgetful morphisms AM"(n) — M"(m) if m isadivisor of n. For
many purposesit sufficesto solve the apparently easier problem of constructing similar
compactifications of the generic fiber M"(n) x4 K orevenof M"(n) x4 C. Note
that varietiesover C,, may be studied by analytic means, using the GAGA principle.

There are presently three approaches towards the problem of compactification:

(a) a (sketchy) construction of the present author [G2] of a compactification M of
M, the C,-variety corresponding to an arithmetic subgroup I' of GL(r, A) (see
(4.3.4) and (4.4.2)). We will return to this below;

(b) an analytic compactification similar to (a), restricted to the case of apolynomial ring
A =TF,[T], but with the advantage of presenting complete proofs, by M. M. Kapranov
[KT;

(c) R. Pink’sidea of amodular compactification of M"(n) over A through a general-
ization of the underlying moduli problem [P2].

Approaches (a) and (b) agree essentialy in their common domain, up to notation
and some other choices. Let us briefly describe how one proceedsin (a). Sincethereis
nothing to show for » = 1, we supposethat r > 2.

Welet A beany Drinfeld ring. If T isasubgroup of GL(r, K) commensurable
with GL(r, A) (we cal such I arithmetic subgroups), the point set T \ Q is the
set of C.-points of an affine variety M over C.,, as results from the discussion of
subsection4.4. If T isthe congruencesubgroup '(n) = {y € GL(r, A):v = 1 mod n},
then M isoneof theirreducible componentsof M7 (n) x4 Cu.

Definition 8. For w = (w1,: ... : w,) € P"1(C.) put

r(w) =dimg(Kwi +---+ Kw,) and ro(w) :=dimg (Kewit: -+ Koow,).
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Then 1 < ro(w) < r(w) < 7 and Q" = {w | r(w) = r}. More generaly, for
1<i<rlet

Q" = {wireo(w) = r(w) = i}

Then Q™% = [ JQy,, where V' runsthroughthe K -subspacesof dimension i of K" and
Qy isconstructed from V' inasimilar way asis Q" = Qg from C. = (K") ® Cw.
That is, Qy = {w € P(V ® Cx) — P HCw):7oo(w) = r(w) = i}, which has a
natural structure as analytic space of dimension dim(V") — 1 isomorphic with QdmM(V),

Finally, welet Q" := {w: 7o (w) = r(w)} = Ui, Q7"

Q" along with its stratification through the Q™% is stable under GL(r, K), sothis
aso holds for the arithmetic group " in question. The quotient " \ Q" turns out to be
the C -points of the wanted compactification M.

Definition 9. Let P, — G := GL(r) bethe maximal parabolic subgroup of matrices
with first ¢ columns being zero. Let H; be the obvious factor group isomorphic
GL(r —i). Then P;(K) actsvia H;(K) on K"~% andthuson Q"~%. From

G(K)/Pi(K) = {subspaces ' of dimension » —i of K"}
we get bijections
G(K) X p,(K) QT*i = QT,T*i7

(45.1) 1
(gywir1 oo twp) — (0 10 wis1 T .o T wy)g

and

(4.5.2) r\Qr—:= Uger\G(K)/Pi(K)r(z, 9\ Q

where T(i,g) := P; N g~1I,, and the double quotient T \ G(K)/P;(K) is finite by
elementary lattice theory. Note that the image of '(i,g) in H;(K) (the group that
effectively acts on Q"~%) is again an arithmetic subgroup of H;(K) = GL(r — i, K),
and so the right hand side of (4.5.2) is the disjoint union of analytic spaces of the same
type '\ Q"".

Example5. Let T =T(1) = GL(r,A) and i = 1. Then I' \ G(K)/P1(K) equals
the set of isomorphism classes of projective A-modules of rank » — 1, which in turn
(through the determinant map) is in one-to-one correspondence with the class group
Pic(A).

Let Fy be the image of Qi in '\ Q". The different analytic spaces I,
corresponding to locally closed subvarieties of M, are glued together in such away
that Iy liesin the Zariski closure 'y of Fy if and only if U is I'-conjugate to a
K -subspaceof V. Taking into account that Fy ~ "\ Q4m(V) = A, (C..) for some
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arithmetic subgroup I’ of GL(dim(V), K), Fy correspondsto the compactification
Mr/ of M.

The details of the gluing procedure are quite technical and complicated and cannot
be presented here (see [G2] and [K] for some special cases). Suffice it to say that
for each boundary component Fy, of codimension one, avertical coordinate ¢y, may
be specified such that £y, islocally given by ¢y, = 0. The result (we refrain from
stating a “theorem” since proofs of the assertions below in full strength and generality
are published neither in [G2] nor in [K]) will be anormal projective C-variety M
provided with an open dense embedding i: M — M with the following properties:
Mr(Cx) =T\ Q", andtheinclusion ' \ Q" — I\ Q" correspondsto i;

M isdefined over the same finite abelian extension of K asis Mr;

for [ — I, the natural map My, — M extendsto My, — Mr;

the Fy correspond to locally closed subvarieties, and Fy, = UFy;, where U runs

through the K -subspacesof V' contained up to the actionof I in V;

e My is“virtualy non-singular”, i.e., I containsasubgroup " of finite index such
that My, isnon-singular; in that case, the boundary components of codimension
one present normal crossings.

Now suppose that M is non-singular and that = € Mr(Coo) = Upcic, Q"
belongsto Q1. Thenwe can find asequence {z} = Xo C --- X;--- C X,_1 = My
of smooth subvarieties X; = F'y, of dimension i. Any holomorphic function around
z (or more generally, any modular form for ') may thus be expanded as a series in
ty with coefficients in the function field of F'y, _, etc. Hence My (or rather its
completion at the X; ) may be described through (r» — 1)-dimensional local fields with
residue field C,. The expansion of some standard modular forms can be explicitly
calculated, see [G1, VI] for the case of » = 2. In the last section we shall present at
least the vanishing orders of some of these forms.

Example6. Let A bethepolynomial ring F,[7] and ' = GL(r, A). Asresultsfrom
Example 3, (4.3.3) and (4.4.2),

Mr(Coo) = M"(1)(Coo) ={(91,--- ,9r) € CL1gr 70}/ CL,
where C*_ acts diagonally through c(g1,...,9,) = (... ,cqiflgi,...), which is the

open subspace of weighted projectivespace P"~1(¢—1, ... , ¢" —1) with non-vanishing
last coordinate. The construction yields

Mr(Co) =P Mg =1, 10" = (Co) = [, M'(D(Coc):

Itssingularities are rather mild and may be removed upon replacing I' by a congruence
subgroup.
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4.6. Vanishing orders of modular forms

In thisfinal section we state some results about the vanishing orders of certain modular
formsalong theboundary divisorsof M, inthecasewhere I iseither I'(1) = GL(r, A)
or afull congruencesubgroup ' (n) of '(1). Thesearerelevant for the determination of
K - and Chow groups, and for standard conjectures about the arithmetic interpretation
of partial zetavalues.

In what follows, we suppose that ~ > 2, and put z; := 2+ (1 <@ < r) for the
coordinates (w1 : ... : w,) of w € Q". Quite generaly, a = (a1, ... ,a,) denotesa
vector with » components.

Definition 10. TheEisenstein series E), of weight k£ on Q" is defined as

1

Ek((i)) = Z Lk
O r (arz1+ - +arz)

Similarly, we definefor u e n=1 x ... xn~1c K"

Ek,g(“_)) = Z L

oo (@121 +a,z)
gEEmOdAT

Thesearemodular formsfor (1) and I'(n), respectively, that is, they are holomorphic,
satisfy the obvious transformation values under (1) (resp. I'(n)), and extend to
sections of aline bundle on M. Asin Example 4, there is a second type of modular
forms coming directly from Drinfeld modules.

Definition 11. For w € Q" write A, = Az +--- + Az, and e, ¢¥ for thelattice
function and Drinfeld module associated with A, respectively. If a € A has degree

d = deg(a),
s =a+ Z li(a,w)T".
1<i<rd
The /;(a,w) are modular forms of weight ¢* — 1 for . Thisholdsin particular for
Aa(@) = grd(av ‘i))v

which has weight ¢"¢ — 1 and vanishes nowhere on Q". The functions ¢ and A in
Example 4 merely constitute avery special instance of this construction. We further let,
for u e (n1)",

62(@) = eog(ulzl +..oF Urzr)7
the n-division point of type u of ¢%. If u & A", e,(w) vanishes nowhere on Q",
and it can be shown that in this case,

(4.6.1) €y = E1u
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We are interested in the behavior around the boundary of My of these forms. Let us
first describethe set {F'y/} of boundary divisors, i.e., of irreducible components, all of
codimension one, of M — M. For I =T (1) = GL(r, A), thereisanatural bijection

(4.6.2) {Fy} = Pic(A)

described in detail in [G1, VI 5.1]. Itisinduced from V — inverseof A"~1(V N A").
(Recall that V' isa K -subspace of dimension » — 1 of K", thus VN A" aprojective
module of rank ~ — 1, whose (r — 1)-th exterior power A"~1(V N A") determines
an element of Pic(A).) We denote the component corresponding to the class (a) of
anidea a by F(,. Similarly, the boundary divisors of A/ for ' = I'(n) could be
described via generalized class groups. We simply use (4.5.1) and (4.5.2), which now
give

(4.6.3) {Fy} =T\ GL(r, K)/ P(K).

We denote the class of v € GL(r, K) by [v]. For the description of the behavior of
our modular formsalong the F'y-, we need the partial zetafunctionsof A and K. For
more about these, see [W] and [G1, I11].

Definition 12. We let

s P(qg™*
CK(S) = Z ’Cl| - (1 _ q—s()q(l 3 ql—s)

be the zeta function of K with numerator polynomial P(X) € Z[X]. Herethesumis
taken over the positive divisors a of K (i.e, of the curve C with function field K).
Extending the sum only over divisors with support in Spec(A), we get

Cas)= > a7 = k)X — g™ ™),

07aC A idedl

where d, = dequ (c0). For aclass ¢ € Pic(A) we put

Cls) = Jal ™.

acc
If finally n ¢ K isafractional A-ideal and ¢ € K, we define
Cemodn(8) = Z la]”*.
azatemlf)dn

Amongtheobviousdistributionrelations[ G1, 11 sect.1] between these, we only mention

(4.6.4) (n-1)(8) = q’n_| 1

Wearenow in aposition to state the foll owing theorems, which may be proved following
the method of [G1, VI].

Comodn (8)-
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Theorem 4. Let a € A be non-constant and ¢ a classin Pic(A). The modular form
A, for GL(r, A) hasvanishing order

Ordc(Aa) = _(‘a|r - l)Cc(l - 7')
at the boundary component F'. correspondingto c.

Theorem 5. Fixanideal n of A and u € K" — A" suchthat v -n C A", and let
e; ! = E1,, bethemodular formfor I"(n) determined by thesedata. Thevanishing order
oFd[l,] of Ep,(w) at the component correspondingto v € GL(r, K) (see (4.6.2)) is
given as follows: let m1: K™ — K be the projection to the first coordinate and let a

be the fractional ideal m1(A” - v). Writefurther « - v = (v1,... ,v,). Then
_ It
ordp,) By (w) = W(Culmoda(l — 1) — Comoda(1 — 7).

Note that the two theorems do not depend on the full strength of propertiesof M
as stated without proofs in the last section, but only on the normality of M, whichis
provedin [K] for A =TF,[T], and whose generalization to arbitrary Drinfeld ringsis
straightforward (even though technical).
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