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A. Appendix to Section 2

Masato Kurihara and Ivan Fesenko

This appendix aims to provide more details on several notions introduced in section 2,
as well as to discuss some basic facts on differentials and to provide a sketch of the
proof of Bloch–Kato–Gabber’s theorem. The work on it was completed after sudden
death of Oleg Izhboldin, the author of section 2.

A1. Definitions and properties of several basic notions
(by M. Kurihara)

Before we proceed to our main topics, we collect here the definitions and properties of
several basic notions.

A1.1. Differential modules.

Let A and B be commutative rings such that B is an A-algebra. We define Ω1
B/A

to be the B-module of regular differentials over A. By definition, this B-module
Ω1
B/A is a unique B-module which has the following property. For a B-module

M we denote by DerA(B,M ) the set of all A-derivations (an A-homomorphism
ϕ:B → M is called an A-derivation if ϕ(xy) = xϕ(y) + yϕ(x) and ϕ(x) = 0 for
any x ∈ A ). Then, ϕ induces ϕ: Ω1

B/A → M (ϕ = ϕ ◦ d where d is the canonical

derivation d:B → Ω1
B/A ), and ϕ 7→ ϕ yields an isomorphism

DerA(B,M ) →̃ HomB(Ω1
B/A,M ).

In other words, Ω1
B/A is the B-module defined by the following

generators: dx for any x ∈ B
and relations:

d(xy) = xdy + ydx

dx = 0 for any x ∈ A .
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32 M. Kurihara and I. Fesenko

If A = Z, we simply denote Ω1
B/Z by Ω1

B .

When we consider Ω1
A for a local ring A, the following lemma is very useful.

Lemma. If A is a local ring, we have a surjective homomorphism

A⊗Z A∗ −→ Ω1
A

a⊗ b 7→ ad log b = a
db

b
.

The kernel of this map is generated by elements of the form

k∑
i=1

(ai ⊗ ai)−
l∑
i=1

(bi ⊗ bi)

for ai , bi ∈ A∗ such that Σki=1ai = Σli=1bi .

Proof. First, we show the surjectivity. It is enough to show that xdy is in the image of
the above map for x, y ∈ A. If y is in A∗ , xdy is the image of xy ⊗ y. If y is not
in A∗ , y is in the maximal ideal of A, and 1 + y is in A∗ . Since xdy = xd(1 + y),
xdy is the image of x(1 + y)⊗ (1 + y).

Let J be the subgroup of A⊗ A∗ generated by the elements

k∑
i=1

(ai ⊗ ai)−
l∑
i=1

(bi ⊗ bi)

for ai , bi ∈ A∗ such that Σki=1ai = Σli=1bi . Put M = (A ⊗Z A∗)/J . Since it is clear
that J is in the kernel of the map in the lemma, a⊗ b 7→ ad log b induces a surjective
homomorphism M → Ω1

A , whose injectivity we have to show.
We regard A⊗ A∗ as an A-module via a(x ⊗ y) = ax⊗ y. We will show that J

is a sub A-module of A⊗A∗ . To see this, it is enough to show

k∑
i=1

(xai ⊗ ai)−
l∑
i=1

(xbi ⊗ bi) ∈ J

for any x ∈ A. If x 6∈ A∗ , x can be written as x = y + z for some y, z ∈ A∗ , so we
may assume that x ∈ A∗ . Then,

k∑
i=1

(xai ⊗ ai)−
l∑
i=1

(xbi ⊗ bi)

=
k∑
i=1

(xai ⊗ xai − xai ⊗ x)−
l∑
i=1

(xbi ⊗ xbi − xbi ⊗ x)

=
k∑
i=1

(xai ⊗ xai)−
l∑
i=1

(xbi ⊗ xbi) ∈ J.
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Thus, J is an A-module, and M = (A⊗A∗)/J is also an A-module.
In order to show the bijectivity of M → Ω1

A , we construct the inverse map
Ω1
A → M . By definition of the differential module (see the property after the defini-

tion), it is enough to check that the map

ϕ:A −→M x 7→ x⊗ x (if x ∈ A∗)
x 7→ (1 + x)⊗ (1 + x) (if x 6∈ A∗)

is a Z-derivation. So, it is enough to check ϕ(xy) = xϕ(y) + yϕ(x). We will show this
in the case where both x and y are in the maximal ideal of A. The remaining cases
are easier, and are left to the reader. By definition, xϕ(y) + yϕ(x) is the class of

x(1 + y)⊗ (1 + y) + y(1 + x)⊗ (1 + x)

= (1 + x)(1 + y)⊗ (1 + y)− (1 + y)⊗ (1 + y)

+ (1 + y)(1 + x)⊗ (1 + x)− (1 + x)⊗ (1 + x)

= (1 + x)(1 + y)⊗ (1 + x)(1 + y)− (1 + x)⊗ (1 + x)

− (1 + y)⊗ (1 + y).

But the class of this element in M is the same as the class of (1 +xy)⊗ (1 +xy). Thus,
ϕ is a derivation. This completes the proof of the lemma.

By this lemma, we can regard Ω1
A as a group defined by the following

generators: symbols [a, b} for a ∈ A and b ∈ A∗
and relations:

[a1 + a2, b} = [a1, b} + [a2, b}
[a, b1b2} = [a, b1} + [a2, b2}
k∑
i=1

[ai, ai} =
l∑
i=1

[bi, bi} where ai’s and bi’s satisfy
k∑
i=1

ai =
l∑
i=1

bi.

A1.2. n-th differential forms.

Let A and B be commutative rings such that B is an A-algebra. For a positive
integer n > 0, we define Ωn

B/A by

Ωn
B/A =

∧
B

Ω1
B/A.

Then, d naturally defines an A-homomorphism d: Ωn
B/A → Ωn+1

B/A , and we have a
complex

... −→ Ωn−1
B/A −→ Ωn

B/A −→ Ωn+1
B/A −→ ...

which we call the de Rham complex.
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34 M. Kurihara and I. Fesenko

For a commutative ring A, which we regard as a Z-module, we simply write Ωn
A

for Ωn
A/Z . For a local ring A, by Lemma A1.1, we have Ωn

A =
∧n
A((A ⊗ A∗)/J ),

where J is the group as in the proof of Lemma A1.1. Therefore we obtain

Lemma. If A is a local ring, we have a surjective homomorphism

A⊗ (A∗)⊗n −→ Ωn
A/Z

a⊗ b1 ⊗ ...⊗ bn 7→ a
db1

b1
∧ ... ∧ dbn

bn
.

The kernel of this map is generated by elements of the form

k∑
i=1

(ai ⊗ ai ⊗ b1 ⊗ ... ⊗ bn−1)−
l∑
i=1

(bi ⊗ bi ⊗ b1 ⊗ ...⊗ bn−1)

(where Σki=1ai = Σli=1bi )
and

a⊗ b1 ⊗ ... ⊗ bn with bi = bj for some i 6= j .

A1.3. Galois cohomology of Z/pn(r) for a field of characteristic p > 0 .

Let F be a field of characteristic p > 0. We denote by F sep the separable closure
of F in an algebraic closure of F .

We consider Galois cohomology groups Hq(F,−) := Hq(Gal(F sep/F ),−). For an
integer r > 0, we define

Hq(F,Z/p(r)) = Hq−r(Gal(F sep/F ),Ωr
F sep,log)

where Ωr
F sep,log is the logarithmic part of Ωr

F sep , namely the subgroup generated by
d log a1 ∧ ... ∧ d logar for all ai ∈ (F sep)∗ .

We have an exact sequence (cf. [I, p.579])

0 −→ Ωr
F sep,log −→ Ωr

F sep
F−1−−−→ Ωr

F sep/dΩr−1
F sep −→ 0

where F is the map

F(a
db1

b1
∧ ... ∧ dbr

br
) = ap

db1

b1
∧ ... ∧ dbr

br
.

Since Ωr
F sep is an F -vector space, we have

Hn(F,Ωr
F sep ) = 0

for any n > 0 and r > 0. Hence, we also have

Hn(F,Ωr
F sep/dΩr−1

F sep ) = 0

for n > 0. Taking the cohomology of the above exact sequence, we obtain

Hn(F,Ωr
F sep,log) = 0
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for any n > 2. Further, we have an isomorphism

H1(F,Ωr
F sep,log) = coker(Ωr

F
F−1−−−→ Ωr

F/dΩr−1
F )

and

H0(F,Ωr
F sep,log) = ker(Ωr

F
F−1−−−→ Ωr

F /dΩr−1
F ).

Lemma. For a field F of characteristic p > 0 and n > 0, we have

Hn+1(F,Z/p (n)) = coker(Ωn
F

F−1−−−→ Ωn
F /dΩn−1

F )

and

Hn(F,Z/p (n)) = ker(Ωn
F

F−1−−−→ Ωn
F /dΩn−1

F ).

Furthermore, Hn(F,Z/p (n− 1)) is isomorphic to the group which has the following
generators: symbols [a, b1, ..., bn−1} where a ∈ F , and b1 , ..., bn−1 ∈ F ∗
and relations:

[a1 + a2, b1, ..., bn−1} = [a1, b1, ..., bn−1} + [a2, b1, ..., bn−1}
[a, b1, ...., bib

′
i, ...bn−1} = [a, b1, ...., bi, ...bn−1} + [a, b1, ...., b

′
i, ...bn−1}

[a, a, b2, ...., bn−1} = 0

[ap − a, b1, b2, ...., bn−1} = 0

[a, b1, ...., bn−1} = 0 where bi = bj for some i 6= j.

Proof. The first half of the lemma follows from the computation of Hn(F,Ωr
F sep,log)

above and the definition of Hq(F,Z/p (r)). Using

Hn(F,Z/p (n− 1)) = coker(Ωn−1
F

F−1−−−→ Ωn−1
F /dΩn−2

F )

and Lemma A1.2 we obtain the explicit description of Hn(F,Z/p (n− 1)).

We sometimes use the notation Hn
p (F ) which is defined by

Hn
p (F ) = Hn(F,Z/p (n− 1)).

Moreover, for any i > 1, we can define Z/pi (r) by using the de Rham–Witt
complexes instead of the de Rham complex. For a positive integer i > 0, following
Illusie [I], define Hq(F,Z/pi(r)) by

Hq(F,Z/pi(r)) = Hq−r(F,WiΩr
F sep,log)

where WiΩr
F sep,log is the logarithmic part of WiΩr

F sep .
Though we do not give here the proof, we have the following explicit description of

Hn(F,Z/pi (n− 1)) using the same method as in the case of i = 1.
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Lemma. For a field F of characteristic p > 0 let Wi(F ) denote the ring of Witt
vectors of length i, and let F:Wi(F )→Wi(F ) denote the Frobenius endomorphism.
For any n > 0 and i > 0, Hn(F,Z/pi (n− 1)) is isomorphic to the group which has
the following
generators: symbols [a, b1, ..., bn−1} where a ∈Wi(F ), and b1 , ..., bn−1 ∈ F ∗
and relations:

[a1 + a2, b1, ..., bn−1} = [a1, b1, ..., bn−1} + [a2, b1, ..., bn−1}
[a, b1, ...., bjb

′
j , ...bn−1} = [a, b1, ...., bj , ...bn−1} + [a, b1, ...., b

′
j , ...bn−1}

[(0, ..., 0, a, 0, ..., 0), a, b2 , ...., bn−1} = 0

[F(a) − a, b1, b2, ...., bn−1} = 0

[a, b1, ...., bn−1} = 0 where bj = bk for some j 6= k.

We sometimes use the notation

Hn
pi(F ) = Hn(F,Z/pi (n− 1)).

A2. Bloch–Kato–Gabber’s theorem (by I. Fesenko)

For a field k of characteristic p denote

νn = νn(k) = Hn(k,Z/p (n)) = ker(℘: Ωn
k → Ωn

k/dΩn−1
k ),

℘ = F− 1:
(
a
db1

b1
∧ · · · ∧ dbn

bn

)
7→ (ap − a)

db1

b1
∧ · · · ∧ dbn

bn
+ dΩn−1

k .

Clearly, the image of the differential symbol

dk:Kn(k)/p→ Ωn
k , {a1, . . . , an} 7→

da1

a1
∧ · · · ∧ dan

an

is inside νn(k). We shall sketch the proof of Bloch–Kato–Gabber’s theorem which
states that dk is an isomorphism between Kn(k)/p and νn(k).

A2.1. Surjectivity of the differential symbol dk:Kn(k)/p→ νn(k) .

It seems impossible to suggest a shorter proof than original Kato’s proof in [K, §1].
We can argue by induction on n; the case of n = 1 is obvious, so assume n > 1.

Definitions–Properties.
(1) Let {bi}i∈I be a p-base of k ( I is an ordered set). Let S be the set of all strictly

increasing maps

s: {1, . . . , n} → I.

For two maps s, t: {1, . . . , n} → I write s < t if s(i) 6 t(i) for all i and
s(i) 6= t(i) for some i.
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(2) Denote d log a := a−1da. Put

ωs = d log bs(1) ∧ · · · ∧ d log bs(n).

Then {ωs : s ∈ S} is a basis of Ωn
k over k.

(3) For a map θ: I → {0, 1, . . . , p− 1} such that θ(i) = 0 for almost all i set

bθ =
∏

bθ(i)
i .

Then {bθωs} is a basis of Ωn
k over kp.

(4) Denote by Ωn
k (θ) the kp-vector space generated by bθωs, s ∈ S . Then Ωn

k (0) ∩
dΩn−1

k = 0. For an extension l of k, such that k ⊃ lp , denote by Ωn
l/k the

module of relative differentials. Let {bi}i∈I be a p-base of l over k. Define
Ωn
l/k(θ) for a map θ: I → {0, 1, . . . , p − 1} similarly to the previous definition.

The cohomology group of the complex

Ωn−1
l/k (θ)→ Ωn

l/k(θ)→ Ωn+1
l/k (θ)

is zero if θ 6= 0 and is Ωn
l/k(0) if θ = 0.

We shall use Cartier’s theorem (which can be more or less easily proved by induction
on |l : k| ): the sequence

0→ l∗/k∗ → Ω1
l/k → Ω1

l/k/dl

is exact, where the second map is defined as b mod k∗ → d log b and the third map is
the map ad log b 7→ (ap − a)d log b + dl.

Proposition. Let Ωn
k (<s) be the k-subspace of Ωn

k generated by all ωt for s > t ∈ S .
Let kp−1 = k and let a be a non-zero element of k. Let I be finite. Suppose that

(ap − a)ωs ∈ Ωn
k (<s) + dΩn−1

k .

Then there are v ∈ Ωn
k (<s) and

xi ∈ kp({bj : j 6 s(i)}) for 1 6 i 6 n
such that

aωs = v + d log x1 ∧ · · · ∧ d log xn.

Proof of the surjectivity of the differential symbol. First, suppose that kp−1 = k and
I is finite. Let S = {s1, . . . , sm} with s1 > · · · > sm . Let s0: {1, . . . , n} → I
be a map such that s0 > s1. Denote by A the subgroup of Ωn

k generated by
d log x1 ∧ · · · ∧ d log xn . Then A ⊂ νn. By induction on 0 6 j 6 m using the
proposition it is straightforward to show that νn ⊂ A + Ωn

k (<sj), and hence νn = A.
To treat the general case put c(k) = coker(kn(k)→ νn(k)). Since every field is the

direct limit of finitely generated fields and the functor c commutes with direct limits, it
is sufficient to show that c(k) = 0 for a finitely generated field k. In particular, we may
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assume that k has a finite p-base. For a finite extension k′ of k there is a commutative
diagram

kn(k′) −−−−→ νn(k′)

Nk′/k

y Tr k′/k

y
kn(k) −−−−→ νn(k).

Hence the composite c(k)→ c(k′)
Tr k′/k−−−−→ c(k) is multiplication by |k′ : k|. Therefore,

if |k′ : k| is prime to p then c(k)→ c(k′) is injective.
Now pass from k to a field l which is the compositum of all li where li+1 =

li( p−1
√
li−1), l0 = k. Then l = lp−1. Since l/k is separable, l has a finite p-base and

by the first paragraph of this proof c(l) = 0. The degree of every finite subextension in
l/k is prime to p, and by the second paragraph of this proof we conclude c(k) = 0, as
required.

Proof of Proposition. First we prove the following lemma which will help us later for
fields satisfying kp−1 = k to choose a specific p-base of k.

Lemma. Let l be a purely inseparable extension of k of degree p and let kp−1 = k.
Let f : l → k be a k-linear map. Then there is a non-zero c ∈ l such that f (ci) = 0
for all 1 6 i 6 p− 1.

Proof of Lemma. The l-space of k-linear maps from l to k is one-dimensional, hence
f = ag for some a ∈ l, where g: l = k(b)→ Ω1

l/k/dl →̃ k, x 7→ xd log b mod dl for

every x ∈ l. Let α = gd log b generate the one-dimensional space Ω1
l/k/dl over k.

Then there is h ∈ k such that gpd log b− hα ∈ dl. Let z ∈ k be such that zp−1 = h.
Then ((g/z)p−g/z)d log b ∈ dl and by Cartier’s theorem we deduce that there is w ∈ l
such that (g/z)d log b = d log w. Hence α = zd log w and Ω1

l/k = dl ∪ kd log l.

If f (1) = ad log b 6= 0, then f (1) = gd log c with g ∈ k, c ∈ l∗ and hence f (ci) = 0
for all 1 6 i 6 p− 1.

Now for s: {1, . . . , n} → I as in the statement of the Proposition denote

k0 = kp({bi : i <s(1)}), k1 = kp({bi : i 6 s(1)}), k2 = kp({bi : i 6 s(n)}).
Let |k2 : k1| = pr .

Let a =
∑

θ x
p
θbθ . Assume that a 6∈ k2. Then let θ, j be such that j > s(n) is the

maximal index for which θ(j) 6= 0 and xθ 6= 0.
Ωn
k (θ)-projection of (ap − a)ωs is equal to −xpθbθωs ∈ Ωn

k (<s)(θ) + dΩn−1
k (θ).

Log differentiating, we get

−xpθ
(∑
i

θ(i)d log bi
)
bθ ∧ ωs ∈ dΩn

k (<s)(θ)
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which contradicts −xpθθ(j)bθd log bj ∧ ωs 6∈ dΩn
k (<s)(θ). Thus, a ∈ k2.

Let m(1) < · · · < m(r − n) be integers such that the union of m ’s and s ’s is
equal to [s(1), s(n)] ∩ Z. Apply the Lemma to the linear map

f : k1 → Ωr
k2/k0

/dΩr−1
k2/k0

→̃ k0, b 7→ baωs ∧ d log bm(1) ∧ · · · ∧ d log bm(r−n).

Then there is a non-zero c ∈ k1 such that

ciaωs ∧ d log bm(1) ∧ · · · ∧ d log bm(r−n) ∈ dΩr−1
k2/k0

for 1 6 i 6 p− 1 .

Hence Ωr
k2/k0

(0)-projection of ciaωs ∧ d log bm(1) ∧ · · · ∧ d log bm(r−n) for 1 6 i 6
p− 1 is zero.

If c ∈ k0 then Ωr
k2/k0

(0)-projection of aωs ∧ d log bm(1) ∧ · · · ∧ d log bm(r−n) is
zero. Due to the definition of k0 we get

β = (ap − a)ωs ∧ d log bm(1) ∧ · · · ∧ d log bm(r−n) ∈ dΩr−1
k2/k0

.

Then Ωr
k2/k0

(0)-projection of β is zero, and so is Ωr
k2/k0

(0)-projection of

apωs ∧ d log bm(1) ∧ · · · ∧ d log bm(r−n),

a contradiction. Thus, c 6∈ k0.
From dk0 ⊂

∑
i<s(1) k

pdbi we deduce dk0 ∧ Ωn−1
k ⊂ Ωn

k (<s). Since k0(c) =

k0(bs(1)), there are ai ∈ k0 such that bs(1) =
∑p−1

i=0 aic
i. Then

ad log bs(1) ∧ · · · ∧d log bs(n) ≡ a′d log bs(2) · · · ∧d log bs(n) ∧d log c mod Ωn
k (<s).

Define s′: {1, . . . , n− 1} → I by s′(j) = s(j + 1). Then

aωs = v1 + a′ωs′ ∧ d log c with v1 ∈ Ωn
k (<s)

and cia′ωs′ ∧ d log c ∧ d log bm(1) ∧ · · · ∧ d log bm(r−n) ∈ dΩr−1
k2/k0

. The set

I ′ = {c} ∪ {bi : s(1) < i 6 s(n)}
is a p-base of k2/k0. Since cia′ for 1 6 i 6 p − 1 have zero k2(0)-projection with
respect to I ′ , there are a′0 ∈ k0, a′1 ∈ ⊕θ 6=0k1b

′
θ with b′θ =

∏
s(1)<i6s(n) b

θ(i)
i such

that a′ = a′0 + a′1.
The image of aωs ∧ d log bm(1) ∧ · · · ∧ d log bm(r−n) with respect to the Artin–

Schreier map belongs to Ωr
k2/k0

and so is

(a′
p − a′)d log c ∧ ωs′ ∧ d log bm(1) ∧ · · · ∧ d log bm(r−n)

which is the image of

a′d log c ∧ ωs′ ∧ d log bm(1) ∧ · · · ∧ d log bm(r−n).

Then a′
p − a′0, as k0(0)-projection of a′p − a′ , is zero. So a′ − a′p = a′1.

Note that d(a′1ωs′) ∧ d log c ∈ dΩn
k/k0

(<s) = dΩn−1
k/k0

(<s) ∧ d log c.
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Hence d(a′1ωs′ ) ∈ dΩn−1
k/k0

(<s) + d log c∧ dΩn−2
k/k0

. Therefore d(a′1ωs′ ) ∈ dΩn−1
k/k1

(<s)

and a′1ωs′ = α + β with α ∈ Ωn−1
k/k1

(<s), β ∈ ker(d: Ωn−1
k/k1
→ Ωn

k/k1
).

Since k(0)-projection of a′1 is zero, Ωn−1
k/k1

(0)-projection of a′1ωs′ is zero. Then

we deduce that β(0) =
∑
xt∈k1,t<s

′ x
p
tωt , so a′1ωs′ = α + β(0) + (β − β(0)). Then

β−β(0) ∈ ker(d: Ωn−1
k/k1
→ Ωn

k/k1
), so β−β(0) ∈ dΩn−2

k/k1
. Hence (a′−a′p)ωs′ = a′1ωs′

belongs to Ωn−1
k/k1

(<s′) + dΩn−2
k . By induction on n, there are v′ ∈ Ωn−1

k (<s′),
xi ∈ kp{bj : j 6 s(i)} such that a′ωs′ = v′ + d log x2 ∧ · · · ∧ d log xn . Thus,
aωs = v1 ± d log c ∧ v′ ± d log c ∧ d log x2 ∧ · · · ∧ d log xn .

A2.2. Injectivity of the differential symbol.

We can assume that k is a finitely generated field over Fp . Then there is a finitely
generated algebra over Fp with a local ring being a discrete valuation ring O such that
O/M is isomorphic to k and the field of fractions E of O is purely transcendental
over Fp .

Using standard results on Kn(l(t)) and Ωn
l(t) one can show that the injectivity of dl

implies the injectivity of dl(t) . Since dFp is injective, so is dE .
Define kn(O) = ker(kn(E) → kn(k)). Then kn(O) is generated by symbols and

there is a homomorphism

kn(O)→ kn(k), {a1, . . . , an} → {a1, . . . , an},
where a is the residue of a. Let kn(O,M) be its kernel.

Define νn(O) = ker(Ωn
O → Ωn

O/dΩn−1
O ), νn(O,M) = ker(νn(O)→ νn(k)). There

is a homomorphism kn(O)→ νn(O) such that

{a1, . . . , an} 7→ d log a1 ∧ · · · ∧ d log an.

So there is a commutative diagram

0 −−−−→ kn(O,M) −−−−→ kn(O) −−−−→ kn(k) −−−−→ 0

ϕ

y y dk

y
0 −−−−→ νn(O,M) −−−−→ νn(O) −−−−→ νn(k) .

Similarly to A2.1 one can show that ϕ is surjective [BK, Prop. 2.4]. Thus, dk is
injective.
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